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ABSTRACT. Ecological dynamics characterizes adaptive behavior
as an emergent, self-organizing property of interpersonal interac-
tions in complex social systems. The authors conceptualize and
investigate constraints on dynamics of decisions and actions in the
multiagent system of team sports. They studied coadaptive interper-
sonal dynamics in rugby union to model potential control param-
eter and collective variable relations in attacker–defender dyads.
A videogrammetry analysis revealed how some agents generated
fluctuations by adapting displacement velocity to create phase tran-
sitions and destabilize dyadic subsystems near the try line. Agent
interpersonal dynamics exhibited characteristics of chaotic attrac-
tors and informational constraints of rugby union boxed dyadic
systems into a low dimensional attractor. Data suggests that deci-
sions and actions of agents in sports teams may be characterized
as emergent, self-organizing properties, governed by laws of dy-
namical systems at the ecological scale. Further research needs to
generalize this conceptual model of adaptive behavior in perfor-
mance to other multiagent populations.

Keywords: action, constraints, decision making, multiagent dynam-
ics, self-organization

S tudies of behavioral neurobiology have tended to favor
closed systems analyses, typical of traditional scientific

methods founded on a determinate world view (Glimcher,
2005). Consequently, theories of decision making, planning,
and action in motor behavior have typically been founded
on the notion that humans construct mental models or rep-
resentations to frame strategic problems (Maule, Hockey, &
Bdzola, 2000). These frameworks suggest that neurobiolog-
ical behavior occurs through the development of extensive
and highly differentiated knowledge structures mapped into
memory circuits to expedite functional performance (e.g.,
Anderson’s ACT∗ theory, 1983; Araújo, Davids, Sainhas, &
Fernandes, 2002; Hodgkinson, Maule, & Bown, 2004). In a
determinate world, uncertainty is reduced through individu-
als testing the causal mapping of related phenomena in closed
systems. In the early decades of the last century, a challenge
to a determinate view of the world was raised by quantum
physics and taken up later in the social, psychological, and
behavioral neurosciences (Glimcher).

As a consequence, the concept of indeterminacy has begun
to gain credence in many open-systems analyses of neurobi-
ological behavior, which have incorporated environmental
constraints on action (e.g., Davids, Button, Araújo, Ren-
shaw, & Hristovski, 2006; Gigerenzer, Todd, & ABC Re-
search Group, 1999; Hastie, 2001; Schall, 2001, 2004). In-
determinate systems portray a certain amount of behavioral

unpredictability. In such systems, behavior is not an outcome
sustained by a single cause–effect relation. Rather, work in
neuroscience suggests that behavior always contains a cer-
tain degree of uncertainty that is impossible to eliminate,
supporting the assumption that humans perceive, make de-
cisions, and act in an indeterminate world (Glimcher, 2005).
These developments in the natural sciences have raised im-
portant questions for traditional closed-systems modeling of
rational decision making, planning, and action founded on
classical utility theory used to analyze economic systems
(e.g., Bar-Eli, Lurie, & Breivik, 1999; Ranyard, Crozier, &
Svenson, 1997).

Indeterminacy has influenced planning and design of
robotic platforms and artefactual control systems. Traditional
sense, model, plan, act principles are being complemented by
behavior-based control approaches in engineering systems to
produce complex controllers of multiple agents operating in
unpredictable, dynamic environments, such as during terrain
exploration, process manufacturing, and playing in robocup
soccer competitions (e.g, Mataric, 1998). Some research has
shown how insights on self-organizing collectives could be
implemented in the design of control systems for multiagent
interactions (e.g., Davids et al., 2006; Di Paolo, 2002; Paine
& Tani, 2005; Sumpter, 2006). For example, indeterminacy
features strongly in the development of situated robotics, a
design platform for multiagent robotic and artificial intelli-
gence systems informed by theories of neurobiological per-
ception, planning, and action to support dynamic interagent
interactions in complex performance environments.

A theoretical rationale for modeling decisions and actions
of interactive agents in complex organizations can also be
framed in ideas from evolutionary biology, complexity sci-
ences, ecological psychology, and nonlinear dynamics (e.g.,
Araújo, Davids, Bennett, Button, & Chapman, 2004). These
ideas propose that perception, cognition, decision making,
and actions emerge as each individual agent in a complex
system interacts with other agents and can be revealed in
humans through studying their behavioral interactions in
specific performance contexts. In multiagent dynamical sys-
tems, such as work organizations and sports teams, a most
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important source of information constraining the perceptions
and actions of individuals is provided by other interacting
agents (e.g., Marsh, Richardson, Baron, & Schmidt, 2006).
Collective agent performance contexts of sports provide a
particularly useful testing ground for indeterminacy of adap-
tive behavior to understand how emergence of cognition,
decision making, and actions supports intentional behavior
in complex, adaptive neurobiological systems functioning
in such dynamic environments (see also Araújo, Davids, &
Hristovski, 2006; Turvey & Shaw, 1995, 1999; van Orden,
Holden, & Turvey, 2003).

Emergence is a collective property of any open system
(e.g., an attacker–defender dyadic system in team sports),
not uniquely possessed by any of the individual parts (i.e.,
the players), that leads to the spontaneous appearance of co-
ordinated patterns of behavior (Kauffman, 1995). From this
viewpoint, emergent coordination tendencies are a collec-
tive property of dynamic systems of interacting agents (e.g.,
dyadic attacker–defender dyads in team sports such as rugby
union). As Kauffman pointed out, “No vital force or extra
substance is present in the emergent, self-reproducing whole.
But the collective system does possess a stunning property
not possessed by any of its parts” (p. 24). These ideas are
harmonious with outcomes of work by Richardson, Marsh,
Isenhower, Goodman, and Schmidt (2007) who suggested
that in everyday behavior, an individuals frequently coordi-
nate their own decisions and actions with the decisions and
actions of other individuals. These interpersonal coordination
tendencies underlie performance in everyday activities such
as dancing, rowing a canoe, or merely walking and talking
with friends. Although coordination of this sort is sometimes
intentional and explicitly achieved through physical contact
(e.g., when individuals are playing a ball game), it can also
be unintentional and occur throughout a visual interaction.
From a dynamical systems perspective, visually mediated
interpersonal coordination tendencies, despite being inten-
tional or unintentional can be understood as a self-organized
process (Richardson et al.).

Although the experimental design Richardson et al. (2007)
used was based on noncompetitive intentional and uninten-
tional coordination tasks, it is clear that these ideas have im-
plications for the study of multiagent interpersonal dynamics
in competitive performance settings. In this article, our pur-
pose is to conceptualize and test a model of interpersonal
dynamics that can be used to describe emergent decision
making, planning, and actions in multiple agents engaged
in competitive tasks within performance contexts like team
sports. For this purpose, we examined the model’s utility by
investigating the pattern forming dynamics of multiagent in-
teractions that evolved in during 1:1 subphases ubiquitous to
most team sports.

A Conceptual Model to Describe Dyadic System
Dynamics in Rugby Union

Emergent dynamics of component interactions in com-
plex adaptive systems under constraints have been studied
for some time (see Bak & Chialvo, 2001; Kauffman, 1993;

Sumpter, 2006). Kauffman’s modeling of evolutionary pro-
cesses from the perspective of spontaneous self-organizing
system dynamics provides valuable insights on interpersonal
dynamics in complex social systems (e.g., industrial organi-
zations, academic institutions, team games). Self-organizing
dynamics lead to system behaviors that evolve over time
without little direct external influence (e.g., a coach’s pre-
scriptive instructions) and are only sustained by information
created by the interactions amongst system agents (e.g., the
players in team games). In such systems, varied patterns of
behavior can emerge as individual agents coadapt their ac-
tions to achieve specific outcomes or goals. Coadaptation
occurs when system agents make behavioral adjustments to
functionally adapt to the behaviors of other agents. Rich in-
terpersonal interactions can spontaneously emerge when pre-
viously uncorrelated agents or processes suddenly become
interconnected and entrained under constraints (Guerin &
Kunkle, 2004; Juarrero, 1999; Kauffmann, 1995). The pro-
cess of coadaptation has been used to explain how sophisti-
cated biological systems evolve and adapt their behaviors and
morphological structure to satisfy evolutionary constraints.
The latter include local constraints posed by neighboring
agents that are manifested in variability in (a) system devel-
opmental trajectories over time, (b) the rate of progression of
such developmental processes, and (c) the cessation of spe-
cific developmental processes. Research has demonstrated
how these evolutionary constraints might lead to changes in
system outcomes over time (Kauffman, 1993).

The ideas behind coadaptive moves under constraints in
evolutionary systems have considerable relevance to the un-
derstanding of interpersonal dynamics at different levels of
complex multiagent collectives because of the scale invari-
ance of key properties exhibited by such systems. Many
complex systems in nature display self-similarity at differ-
ent levels because of their fractal characteristics (e.g., Solé,
Manrubia, Benton, Kauffman, & Bak, 1999). In informal
terms, fractal systems comprise component parts, which are
smaller copies of the whole system. Because of the fractal
nature of complex systems, the principle of universality im-
plies that the local interactions of constituent components in
subsystems can emulate the global interactions of the whole
system at critical points in environmental exchanges (Bak &
Chialvo, 2001; van Orden et al., 2003). These ideas imply
that regardless of whether one is studying global patterns of
interactions of all agents in an organization or the local in-
terpersonal dynamics of two key individuals constrained to
function in a subsystem, behavior is an emergent property of
each system’s dynamics.

Modeled as dynamical systems, multiagent systems such
as sports teams also exhibit important characteristics such
as complexity and metastability (i.e., partially coordinated
tendencies in which individual coordinating elements are
neither completely independent [local segregation] nor fully
linked in a fixed mutual relation [global integration]; Oullier
& Kelso, 2006) because of the potential for interactions to
emerge between system components (i.e., performers) over
time (e.g., an attacker and a defender are two components of
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a dyadic system in 1:1 subphases; Guerin & Kunkle, 2004;
McGarry & Perl, 2007; Passos, Araújo, Davids, Gouveia, &
Serpa, 2006; Schmidt, O’Brien, & Sysko, 1999). The behav-
ior of metastable complex systems is influenced by multiple
variables that may produce multiple effects leading to such
systems being poised in dynamically stable states and open
to constraint.

Complex systems are bounded by two categories of con-
straints that alter the decisions and actions of agents over
time. These include first order contextual constraints (Juar-
rero, 1999; e.g., a specific environmental constraint that de-
creases randomness in behavior and simultaneously increases
the potential of the system to explore new sources of infor-
mation). In team sports, such as football, rugby union, and
basketball, the relative positioning of an attacker with the
ball and a marking defender near an important target area
(e.g., a goal, tryline, basket) is a typical 1:1 situation. The
actions and decisions of dyadic subsystems of team games,
comprising an attacker and a defender, are externally regu-
lated by boundaries of the information fields geared by first
order constraints, such as performance area dimensions, in-
terpersonal distance between players, boundary markings,
and rules of the game. These constraints increase the like-
lihood that specific actions will emerge, such as an attacker
selecting a particular running trajectory to make a score in-
stead of running randomly across the field or a defender
committing to a tackle at a specific location approximate to
the try line in rugby union.

But interacting agents in organizations also operate under
social constraints, and behavior can emerge out of fluctua-
tions created by the dynamics of the interdependent agents in
the system. Self-organization tendencies of complex social
systems lead to the emergence of second order constraints
on behavior (Juarrero, 1999). Self-organization occurs be-
cause complex systems have a predisposition to organize
and display specific coordination tendencies sustained by in-
formation resulting from the interactions amid system agents
(e.g., interactions of the players in team games). Under this
type of constraint, random interactions between system com-
ponents can alter into more organized forms of interactions
as one key system parameter (a control parameter) changes
in value. When a critical control parameter value is achieved,
rich variations in behavior in complex systems can emerge.
A control parameter has been defined as any variable that
can lead a system through a variety of different patterns or
states (see Kelso, 1995). Near the critical state (i.e., a state
to which a system evolves so that it is poised for a tran-
sition; Bak, 1996) interactions between agents and nearest
neighbors can become correlated, in a type of domino effect,
capturing global system interactions and leading to a sudden
reduction from multiple options to one. In the critical state, a
slight change in circumstances characterizing near neighbor
interactions will break the balance of equally poised options
leading to a transition in system order. Criticality provides the
platform for a functional mix of creativity and constraint to
support decision making in dynamic performance environ-

ments. It affords opportunities for rich and varied patterns
of behavior to emerge, which can fit newly arising circum-
stances. Therefore, in complex organizations, the probability
of an event depends on and is altered by the localized emer-
gent interactions of agents, a process known as conditioned
coupling (van Geert, 1994). Over time, the actions of so-
cial system agents become systematically related and their
intentions do not make sense if separated from each other’s
actions, an idea with profound implications for studying de-
cision making in organizations (Kauffmann, 1993).

Coadaptation and System Evolution as a Model of
Emergent Decision Making in a Rugby Union Dyad

These insights of Kauffman (1993), Kelso (1995), Juar-
rero (1999), and Marsh et al. (2006) led us to conceptualize
how behavior may emerge from two agents mutually en-
trained in a subsystem (e.g., attacker–defender dyad) in the
performance context of the team sport of rugby union. In our
model, we characterized an attacker–defender dyad in team
games as a complex dynamical system displaying chaotic
features (i.e., nonlinear behavior, unpredictable outcomes,
sensitivity to initial conditions) with three attractor states to-
ward which system components might converge over time.
Kauffman defined an attractor state as “a set of points or
states in state space to which trajectories within some value
of state space converge asymptotically over time” (p. 177).
State space is a vector space where any dynamical system
(e.g., an attacker–defender dyadic system in team sports) can
be defined at any point (Abarbanel, 1996). For example, in the
team sport of rugby union, these ideas suggest that attractors
in dyads may be defined as preferred states of coordination to
where a system converges over time (e.g., a try being scored
by an attacker, a successful tackle by a defender). Despite
different individual constraints, both agents in a dyadic sub-
system in the team sport of rugby union (i.e., the players) are
attracted to the space available in front of them. Despite the
individual trajectories that each player may adopt, the sub-
system will always converge toward the three attractor (i.e.,
preferred) states mentioned previously. In the initial stable
state of the subsystem, the defender starts closest to the try
line and if the attacker passes the defender, the subsystem
organization is destabilized. For example, when a try occurs,
the dyad structural organization changes or the connection
between the agents changes (i.e., nonphysical to physical;
e.g., when an effective tackle happens, when a tackle occurs
and the attacker passes the defender).

A critical feature observed in chaotic systems is the diver-
gence of trajectories in state space because of sensitivity to
initial conditions (Ruelle, 1978), signifying that slight dif-
ferences in the performance contexts may lead to substantial
differences in subsequent behavior of the system (Kauffman,
1993; Brown, 1995). In rugby union, each agent’s behavior is
initially regulated by first-order contextual constraints such
as the performance area dimensions and boundary markings,
the rules of the game, and each player’s personal goals (i.e.,
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attackers are seeking to score tries and defenders aim to
successfully tackle opponents to stop them scoring tries at
a basic level). During the approach phase in 1:1 subphases
of rugby union, there exists a relative independence of both
players’ decisions and actions, and one player’s actions will
not directly affect the actions of another in a dyad. But,
to achieve their personal tactical performance goals (e.g.,
score a try, defend the try line), the flow of trajectories
pulls the players in this dynamical system toward a region in
state space where the dyadic system is poised for a transition,
the so-called region of self-organized criticality.

In practical terms, the agents’ interactions attract each
other (because of decreasing interpersonal distance) to a crit-
ical region of the field where the decisions and actions of each
player no longer remain independent. A decrease in inter-
personal distance is inversely associated with each player’s
relative dependence and characterizes the 1:1 performance
context in rugby union. The implication is that as players get
closer to each other (i.e., because of a decrease of interper-
sonal distance), the decisions and actions of each individual
player in the dyad become more dependent on decisions and
actions of the immediate opponent in the dyad. Because of the
emergence of second-order constraints, attacker–defender
behavioral dependence is an emergent property of dyadic
systems, which means that a new behavioral repertoire be-
comes available to the dyad functioning as a system.

Despite the many different trajectories available to rugby
union players, second-order contextual constraints that
emerge during this phase typically box the attacker–defender
subsystem toward one of three possible attractor states: (a)
Physical contact takes place but the attacker does not pass
the defender and initial system organization is preserved.
However, the type of connection between the dyad agents
changes (from nonphysical to physical), resulting in the sys-
tem entering a new phase in the self-organizing, emergent
process. (b) Physical contact takes place and the attacker
passes the defender. Because of physical contact, the type of
connection between the dyad agents changes, but the main
difference between this new emergent state and the previous
one is that a change in within-system organization occurs
and the attacker is now the player closest the try line. Or (c)
the attacker passes the defender without physical contact and
the connection between the two players remains nonphysical.
However, the dyad undergoes a phase transition because the
players’ within-system structural organization changes with
the attacker now closer than the defender to the try line.

This conceptual modeling shows how cognition, decision
making, and action in dynamic performance environments
may emerge because of shared interactions by coupled sys-
tem agents. Self-organization under constraints is character-
ized by system agents becoming systematically reorganized
in qualitatively novel ways with changes in connection type
or structural organization among components of the system
(Juarrero, 1999). This conceptualization of the dynamics of
interpersonal interaction in the performance context of team
games led us to empirically investigate the conceptual model

FIGURE 1. Defender–attacker vector with the attacker tra-
jectory represented with a black line and the defender trajec-
tory represented with a gray line. Three different positions
(1a, 1b, and lc for angles of 90◦, 0◦, and −90◦, respectively)
of the collective variable, which is represented by the con-
tinuous black arrow, are shown.

in a study of dyadic system behavior in 1:1 subphases of
rugby union.

Model Measurement

To study interpersonal dynamics of decision making and
action in attacker–defender dyads in team sports, we first
identified a collective variable that accurately described
dyadic system behavior: a vector connecting each agent in
the dyad. The values for this collective variable were calcu-
lated from the angle between the defender–attacker vector
and an imaginary horizontal line parallel to the try line with
the origin in the defender’s position. This analysis method
resulted in an angle close to 90◦ before the attacker reached
the defender and close to −90◦ if the attacker successfully
passed the defender, with a zero crossing point emerging pre-
cisely when the attacker reached the defender (see Figure 1).
As a result of the players’ interactions, the defender–attacker
vector will change over time, with the values of this angular
relation providing a potential collective variable to capture
system behavior.

Next, we plotted the first derivative of the collective vari-
able over time. The aim of this calculation was to analyze the
rate of change of the relative positioning between an attacker
and defender in a dyadic system. When an attacker achieves
greater relative velocity of movement than a defender, the
first derivative values increase with the distance to the min-
imum (i.e., 0◦/s). Alternatively, when a defender’s relative
velocity is greater than an attacker’s, the first derivative val-
ues tend toward the minimum. When there are no differences
between the players’ relative positions, the first derivative
values tend toward 0.
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We hypothesized that the divergence of running speed
(i.e., players’ velocity) between attacker and defender in the
region before the zero crossing point is a key constraint on the
stability of the dyad, leading the system to one of the attractor
states previously identified. This prediction was sustained by
experiential knowledge of the performance context of rugby
union as well as by the expertise of elite coaches (e.g., John
Haggart, Otago Highlanders, New Zealand Super 14s team
defense coach, personal communication, August, 2005).

We also incorporated the use of nonlinear dynamical tools
to analyze dyadic system behavior over time. Brown (1995)
demonstrated how dynamic behaviors of a system can be il-
lustrated using phase space plots (i.e., a representation of the
state of the behavior of the dynamic system in state space; N.
Stergiou, Buzzi, Kurz, & Heidel, 2004). Consequently, we
followed the method suggested by Stergiou et al. to examine
the dynamic behavior of a system from time series data in
which researchers investigate the structural characteristics of
that time series. To achieve our aim, we needed to plot the
system state space. Juarrero (1999) defined state space as a
representation of a system’s current potential: Each possi-
ble state of the system is represented as an intersection of
coordinates, a point or region in two, three, or, more likely,
multidimensional space (i.e., where a system’s dynamical be-
havior is represented by multiple variables). At any instant in
time, the relative positioning of both agents in a dyad could
be represented in state space by a single point. After a small
time interval, each player’s position will slightly alter due to
his or her actions, which implies that the representative point
can move to a new point in system state space. Over time,
the movement of the representative point along a succession
of new points can be traced by a smooth line displaying the
trajectory of the dyadic system in state space. These plots
allowed us to observe the functional structure for the three
visually different possible states of the system and to identify
patterns in the evolution of the continuous flow of the system.

Because of the nonlinear nature of our time series, we de-
cided to use statistical methods of analysis appropriate for
analysis of outcomes of nonlinear dynamical systems, such
as approximate entropy (ApEn). Pincus (1991) suggested
that parameter estimation methods such as ApEn could be
used as a tool to measure the complexity of a system and also
as a measure of regularity or predictability of a time series.
In line with these ideas, we calculated ApEn for each time
series observed in the movements of attackers and defenders
in the dyads. The decision to use ApEn instead of other non-
linear tools such as the Lyapunov exponent and correlation
dimension was made on the basis of previous work by Ster-
giou et al. (2004), who suggested that the former provided a
greater level of statistical accuracy in studying behaviors of
neurobiological systems in which a mix of stochastic and de-
terministic processes are typically observed (see van Orden
et al., 2003).

Method

In the present study, the method for studying interper-
sonal interactions of 1:1 attacker–defender dyads in the team
sport of rugby union was based on techniques articulated by
Passes et al. (2006). Participants were 8 male rugby players
aged 11–12 year (M age = 11.6 years) with an average of
4.0 years of rugby practice (SD = 0.5 years). We decided to
investigate such young players to prevent the confounding
effects of expertise and different amounts of learning from
contaminating the data (cf. Zanone & Kelso, 1994). The par-
ticipants had competed at the highest national competition
levels for their age group. Despite this level of experience,
the emergent patterns of behavior that they displayed were
not the result of prelearned sequences established through
years of training because these players had not had enough
time in practice to assimilate and stabilize such prelearned
sequences. Because of their age-related experience levels, the
behavioral patterns of the players can be considered emer-
gent properties of the interpersonal interactions in the dyads
(cf. Schmidt et al., 1999). To plot players’ interactions, we
designed a task that simulated a subphase of the team sport of
rugby union with the least number of players involved (i.e.,
the ubiquitous 1:1 situation near the try line). In this sub-
phase, an attacker needs to run beyond a defender to score a
try, whereas a defender needs to keep the attacker and ball in
front of him or her. The experimental task was performed on
a field of 5 m width × 10 m depth. To prevent contaminat-
ing effects of fatigue on performance, we decided to observe
each dyad for three trials, allowing us to observe responses
of 48 different dyads.

To capture players’ movements, two digital video cameras
were used to record trajectory motion data. The angle be-
tween the cameras varied between 60◦ and 120◦ to record
motion data (Bartlett, 1997). For image treatment, we used
the software TACTO 7.0, digitized at 25 frames per sec-
ond (Fernandes & Malta, 2007). Artificial neural networks
(ANNs) were used as a procedure to transform the extracted
coordinates into real-world coordinates (see Passes et al.,
2006). An ANN is an information processing system with
parallel distribution and a tendency to store experimental
data to make it available for future use (Haykin, 1994; Smith,
2001; Stergiou & Siganos, 1996).

Dependent Variables

As stated, the values for this collective variable were cal-
culated on the basis of the relative position of the players
as presented in Figure 2 and the trigonometric definition of
sine. The collective variable is defined at time (t) by

θ(t) = arcsin

⎛
⎝ yattacker − ydefender√(

xattacker − xdefender
)2 + (

yattacker − ydefender
)2

⎞
⎠

(t)
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FIGURE 2. Diagram of the calculation of the collective
variable.

With this method, the angle would be close to 90◦ before
an attacker reaches a defender and close to −90◦ after an
attacker successfully passes a defender. The zero crossing
point occurs exactly at the moment when an attacker reaches
the defender’s position on the field (see Figure 1). We made
this choice because if no obstacle to progression on the per-
formance field is present, attackers in team games will choose
the shortest trajectory from their current position to a try line.
Therefore, angle values closer to 90◦ signified that attackers
remained on an imaginary straight line perpendicular to the
try line, which indicated whether one player in the dyad was
closer to the try line than the other. A decrease in angle values
signaled that the attacker was attempting to break system sta-
bility and pass the defender. After a zero crossing, a decrease
in angle values occurred, signifying that an attacker was ap-
proaching the try line at a faster rate than a defender in the
dyad. However, when an attacker passed the defender, two
events could occur: (a) There was no contact between play-
ers or (b) contact between the players occurred. Therefore,
a continuous decrease in angle values, up to approximately
−90◦, reflected that the attacker passed the defender and
moved toward the try line without further contact, increas-
ing interpersonal distance values and decreasing the distance
to the try line. This behavior of the angle value over time
was typically associated with try scoring outcomes from the
dyadic system. However, fluctuations in angle values over
time would be observed when contact between the players
occurred. This fluctuation could stop when a tackle occurred
or, alternatively, when an attacker managed to avoid contact
with a defender.

If the angle values never reach 0◦, this system behavior sig-
nifies that the attacker did not pass the defender, an outcome
usually associated with an effective tackle by the defender.

First Derivative Analysis

The analysis of the first derivative data for each perfor-
mance situation allowed us to characterize the rate of change
of relative position between attacker and defender when three

different performance outcomes were observed in the dyadic
interactions: (a) when an attacker destabilized the dyad to
successfully score a try, (b) when a defender successfully
tackled the attacker to maintain system stability, and (c) when
a defender unsuccessfully tackled an attacker. This value is
obtained using central finite differences approximation of
derivatives, for a given time t and a time increment �t. The
first time derivative of the collective variable is

dθ(t)

dt
= θ(t+�t) − θ(t+�t)

2 · �t

We used a time increment of 0.04 s on the basis of the
time increment between the images of the video captured at
25 frames per second.

The first derivative of the collective variable was plotted
as a function of time, and this procedure allowed us to ana-
lyze how quickly the players changed their relative positions
over time. If the values remained at 0 m/s, this outcome
signified that there were no changes in the players’ relative
position. On the contrary, any change in the players’ relative
positions led to fluctuations in the first derivative values. An
increase in the magnitude of first derivative fluctuations may
be interpreted to suggest that the system was approaching
a self-organized state of criticality poised for a transition.
A sudden decrease in first derivative values meant that the
players were changing their relative positions quickly. This
situation is consistent with observations of clean try situ-
ations. Every time the first derivative values got closer to
0 m/s, this value signaled that the players maintained their
relative positions. This situation is usually consistent with
successful tackles where defenders are able to counterbal-
ance the attacker’s decisions and actions. To observe this
behavior of the system, we plotted data for time on the x
axis and first derivative data on the y axis. The lowest value
achieved is the inflection point, signifying the moment when
an attacker passed a defender.

Phase Space Plot

The phase space plot is a representation of the behavior of
the dynamic system in the state space (Stergiou et al., 2004).
To plot the state space of rugby dyads, we calculated values
of defender–attacker vectors (i.e., the collective variable) on
the x axis and their first derivative (i.e., x′) on the. y axis.
According to Brown (1995), phase space is a graphic de-
piction that can be used to identify the existence of chaotic
attractors in a time series, and this procedure is valuable to
reconstruct the shape of chaotic attractors for visual inspec-
tion, even in the presence of substantial noise. A chaotic
attractor refers to a set of points to where a dynamical sys-
tem can converge over time that displays sensitivity to initial
conditions. Because of this feature in dynamical systems, the
effects of small amounts of variability on system behavior
are amplified. Once sufficiently amplified, the variability de-
termines the system’s large-scale nonlinear behavior and the
outcome then becomes more unpredictable. The use of these
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nonlinear tools allows a variability and complexity analy-
sis for each coordination pattern. Phase space displays the
structural characteristics of each coordination pattern. The
trajectories performed in phase space could acquire distinc-
tive shapes. In this study, our focus was on the pattern display,
such as when it was random (e.g., no clear pattern due to high
variability and increased complexity) or more periodic (e.g.,
when clearly it is possible to observe the beginning and the
end of each time series). More periodic patterns signify less
complexity because of few constraints influencing system
behavior.

Approximate Entropy

ApEn measures the logarithmic probability that a data time
series displays similar features in any subsequent incremen-
tal comparison within the state space of an observed system
(Pincus, 1991). Approximate entropy can be defined as “a
specific method to determine complexity that can quantify
the regularity or predictability of a time series” (N. Stergiou
et al., 2004, p. 76). This measure of the complexity of sys-
tem behavior was calculated over the values of the collective
variable using MATLAB software (Version 6.5.0.180913a).
To calculate ApEn, as suggested by N. Stergiou et al. in all
studies of neurobiological action, the two input parameters,
m (i.e., the number of observation windows to be compared)
and r (i.e., the tolerance factor for which similarity between
observation windows is accepted) presented values of m = 2
and r = 0.2. Higher values of ApEn (i.e., close to 2) signi-
fied more complexity and less regularity and predictability,
whereas lower values of ApEn signified less complexity and
more regularity and predictability.

In this study, collective variable time series data associ-
ated with each trial have different lengths, which necessi-
tate a normalization procedure to allow comparison of their
ApEn values. For this purpose, original time series data were
normalized with a set of random time series that were cal-
culated to provide the maximum value of ApEn. For each
trial, and because ApEn values are asymptotically normal
(Pincus, 1991), 100 normally distributed random time series
were generated with the same data length as the original time
series. A ratio was calculated, defined by the ApEn for the
original time series divided by the average of the ApEn values
in the random time series. The obtained ratio corresponded
to a normalized ApEn value that was suitable to be com-
pared among collective variable time series with different
data lengths.

Dedicated routines were written in MATLAB for this pur-
pose, using some functions written by Kaplan and Staffin
(2009).

Results

In the present study, we examined patterns of interpersonal
dynamics in 1:1 attacker–defender dyads in rugby to test a

FIGURE 3. Four phases of a self-organized process with
the angle of defender–attacker vector values in degrees
(black line): initial state phase, critical fluctuations phase,
phase transition phase, and emergent phase.

conceptual model of emergent decision making and action,
which self-organize under constraints.

Collective Variable

Results are presented in two levels of analysis: (a)
identification of several phases of a self-organization in
attacker–defender dyadic systems in rugby union and (b) de-
scription of three visually different outcome situations that
could emerge from an attacker–defender behavior in rugby
union. In graphical format (Figure 3), four phases of a self-
organized process can be identified in the data: (a) the initial
state of order, (b) the critical fluctuation phase, (c) a phase
transition, and (d) the emergent state.

The different curve shapes observed (See Figure 4) al-
lowed us to classify three visually different situations, and
this graphic displayed exemplar data from analysis of one
trial each when (a) a clean try where contact between an
attacker and a defender did not occur, (b) an unsuccessful
tackle occurred and the attacker passed the defender, and (c)
an effective tackle was made by the defender moving the
attacker backwards.

The initial state of order was characterized by an approach
phase with the maintenance of defender–attacker horizontal
angle values because the attacking players kept the running
line straight. In the critical fluctuations phase, there was ev-
idence that a decrease in interpersonal distance led to some
changes in running line, with the attacker aiming to avoid
contact with the defender and using technical skills to ex-
plore the subsystem’s stability, provoking some fluctuations
in angle values. These changes in running line can be con-
strued as evidence of perturbations within the dyadic system
because of local interpersonal interactions. This is an emer-
gent process constrained by the information field created by
a decrease in interpersonal distance between the attacker and
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FIGURE 4. Three different situations shown with angle of
defender–attacker vector values in degrees: clean try situa-
tion (black dashed line), unsuccessful tackle (gray line), and
effective tackle (black line).

defender. Figure 4 shows that during a clean try, the approach
phase finished at 1.6 s and 88.62◦ of the collective variable
values; during an unsuccessful tackle by the defender, the
approach phase finished at 2.12 s and 89.45◦; and last, dur-
ing an effective tackle, the approach phase finished at 2.08 s
and 86.23◦. In a range from 0 to 90◦, a difference of 3.22◦

in the values of the collective variable that characterized sys-
tem initial conditions (see Figure 4) corresponded to a 3.5%
difference. This sensitivity to relative differences in initial
conditions led to huge differences in the final outcomes of
dyadic interactions.

As stated previously, a continuous decrease in
defender–attacker horizontal angle values after zero cross-
ing signified that a try occurred (see Figure 4, black dashed
lines). Fluctuations (i.e., variations) in angle values signified
that contact between the players took place. This interpreta-
tion was sustained by the assumption that the attacker (after
a zero crossing) followed a straight line trajectory as the
fastest way to get to the try area, a decision that led to angles
values close to −90◦. However, in tackle situations, when
a defender’s actions put an attacker on the floor, the angle
value usually remained approximately at −50◦ (see Figure
4, gray line). Last, in effective tackles (see Figure 4, black
line), the horizontal angle never reached 0◦, signifying that
the attacker never passed the defender.

As we have already noted, the openness of the dyadic
systems and their sensitivity to initial conditions led to dif-
ferences in the final reorganization of the system: (a) data
in Figure 4 (see black dashed line) illustrate how the system
was attracted to lower values of collective variable, to a zero
crossing and then continuously decreasing to approximately
−90◦, which meant that the attacker passed the defender and
a new state of subsystem order emerged; (b) in Figure 4 (see
gray line), data show how the system was attracted to lower
values of the collective variable, to zero crossing and after

that decreasing in a nonlinear fashion until the final values
close to −50◦, signifying once again that an attacker passed
a defender; and (c) these values of the collective variable
suggested that contact between players took place in Figure
4 (see black line), the lowest values of the collective vari-
able never reached 0◦, illustrating that a successful tackle
occurred and an attacker never passed the defender.

First Derivative Analysis

Figure 5 displays exemplar data (collective variable and
first derivative) from analysis of a single trial when (a) a
clean try occurred without contact between an attacker and a
defender (Figures 5A and B), (b) an unsuccessful tackle was
made in which the attacker passed the defender (See Fig-
ures 5C and D), and (c) an effective tackle was made which
stopped the attacker from passing the defender (See Figures
5E and F). In the exemplar clean try situation (See Figures
5A and B), the majority of dyadic activity occurred between
1.5 and 2.5 s after the initiation of the trial. Within this time
interval, there was no zero crossing and the inflection point
occurred at 2 s with a value of −600◦/s. For the unsuccessful
tackle situation in which an attacker passed a defender (See
Figures 5C and D), we observed several zero crossings be-
tween 2 and 2.8 s after trial initiation, followed by a period
with no zero crossings between the 2.9 and 3.5 s. During this
period, the inflection point occurred at 3.3 s with a value of
−400◦/s.

In the effective tackle (See Figures 5E and F), exemplify-
ing when an attacker did not pass a defender, we observed
several zero crossing situations. It was not possible to identify
a single inflection point, although the slowest value achieved
was −300◦/s. Changes in first derivative values observed
in this study may have been due to attackers changing the
running line to avoid being tackled by the defender. Every
time the values neared 0◦ the players’ relative positioning
remained stable. In these situations, the defender maintained
system stability by successfully counterbalancing the attack-
ers’ decision and actions, an example of coadaptive moves in
the interpersonal dynamics of the dyad. Alternatively, when
values were far from 0◦, players had altered their relative
positions. In these situations the attacker had the ability to
increase locomotion velocity to create the fluctuations needed
to destabilize the system, allowing him to pass the defender.
If the attacker and defender velocity values were close, the
relative position of each player did not undergo a substantial
change. The players could annihilate each other’s actions as
occurred in an effective tackle (See Figures 5F). However,
if the players’ relative positioning changed because of an at-
tacker’s velocity being higher than the defender’s, then the
attacker passed the defender as in a clean try situation or
even in an unsuccessful tackle when the attacker passed the
defender (See Figures 5A and B and 5C and D, respectively).

Based on the collective variable graphics, we identified
the moment when the attacker decided to advance and pass
the defender. At this point, the collective values suddenly
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FIGURE 5. (A) Collective variable shown as clean try, (C) tackle but the attacker passed the defender, and (E) effective tackle. (B)
First derivative shown as clean try, (D) tackle but the attacker passed the defender, (F) and effective tackle.
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FIGURE 6. Phase space plot where the x axis represents
the defender–attacker vector values (i.e., collective variable)
and the y axis represents the first derivative. Black line repre-
sents an effective tackle, gray line represents a tackle where
the attacker passes the defender, and the black dashed line
represents a clean try when no contact occurred.

decreased until the zero crossing (in a clean try and tackle
context in which the attacker passed the defender) or the first
inflection point (in the effective tackle).

Phase Space Analysis

In these plots, each of the curves is an exemplar repre-
sentative of specific dyadic system performance outcomes
(i.e., a try, an unsuccessful tackle, an effective tackle). From
the plots, three visually different structures in state space can
be observed: (a) a try situation (See Figure 6, black dashed
line) where the collective variable achieved values close to
−90◦ degrees, (b) a tackle took place but the attacker passed
the defender (See Figure 6, continuous gray line) and the
collective variable values stayed between 0 and −50◦, and
(c) when the attacker did not pass the defender (i.e., when
an effective tackle took place; see Figure 6, continuous black
line) and the collective variable values remained positive in
the neighborhood of 50◦. In these trials, we observed that
in a dyadic system, slight differences in initial conditions
(see Figure 4) led to major differences in the final system
state. The systems exhibited huge differences in emergent
trajectories. The try situation (Figure 6, black dashed line)
ended after the system flowed to almost the entire range of
collective variable values. In the tackle situation (See Figure
6, continuous gray line), the system trajectory ended on the
right side of the graph after zero crossing, contrary to an ef-
fective tackle (Figure 6, continuous black line) where the loop
remained on the left side of the graph. These findings show
how a dyadic system in rugby union can behave as a chaotic
attractor. A second observation is that the attacker–defender
subsystem in this team game exists in a high dimensional
state space, meaning that the system can be influenced by a
huge number of variables (e.g., physical and physiological

FIGURE 7. Mean and standard error bars of the normalized
approximate entropy (ApEn) for each situation.

characteristics of dyad members, emotions and cognitions,
game states, weather conditions, playing surface).

Because of the nonlinear characteristic of the time se-
ries data and in accordance with observations by Stergiou
et al. (2004), the statistical properties of the curves could
be described with measures of complexity such as ApEn. In
this study, we eschewed the use of descriptive or inferen-
tial statistics involving measures such as values for the mean
and standard deviation of a variable because they could bias
hidden important features in the data such as signal variabil-
ity, which is paramount to characterize the complexity and
regularity of a given time series.

Approximate Entropy Analysis

According to Stergiou et al. (2004), ApEn values typically
range from 0 to 2. Values close to 0 are consistent with greater
periodicity and less complexity.

Figure 7 displays the normalized ApEn for each of the three
performance outcomes, with standard error bars included. As
illustrated, there was a tendency for greater values of ApEn in
unsuccessful tackles, which indicated the presence of more
irregularity and complexity compared with clean try situ-
ations, which demonstrated lower ApEn values, indicating
more regularity and periodicity.

We used a nonparametric test to compare normalized
ApEn means of the three performance outcomes (i.e., clean
try, unsuccessful tackle, effective tackle). The test presented
a borderline level of statistical significance (Kruskal-Wallis,
p = .053) as displayed in Table 1.

From the normalized ApEn values for the three situations,
an interesting feature is that system complexity increased
with the level of physical contact between the interacting
agents in the dyad. Dyadic trajectories in clean-try situations
were more periodic, more regular, and less complex than
both of these tackle situations. In rugby dyads, the nonlin-
earity of decisions and actions of each player, as a result of
decreasing interpersonal distance, decreased the probability
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TABLE 1. Nonparametric Test Comparing Approximate Entropy
(ApEn) by Performace Outcome

Normalized ApEn

Situation n M SD Kruskal-Wallis

Clean try 20 0.24 0.133 5.89
Unsuccessful tackle 23 0.34 0.154 5.89
Effective tackle 4 0.33 0.031 5.89

of a time series (e.g., collective variable values) displaying
similar features in comparisons within state space.

Discussion

The data from this research program highlighted that there
are several ways for systems to achieve the same outcome,
which implies that systems have to learn how to deal with per-
formance variability that emerges due to agent interactions.
The findings of our research in the performance context of
team sports exemplified how Kauffman’s (1993) model of
coevolving agent adaptation can serve as a sound theoret-
ical basis to observe emergent decision making in the dy-
namics of interpersonal interactions in multia–gent systems.
Specifically, our results suggested how decision making in
attacker–defender dyads near the try area in the multiagent
performance context of rugby union may be characterized
as an emergent process, governed by laws of dynamical
systems. These are laws that are common to all dynami-
cal systems and are based on important characteristics such
as critical fluctuations, phase transitions, emergent states of
order, and multistability at the ecological scale analysis. This
level of analysis is appropriate to describe and explain the
emergence of players’ decisions and actions in team sports
such as rugby union. It affords an accurate analysis using
an interaction-based approach rather then a traditional indi-
vidual participant based approach. The data have implica-
tions for research on the interpersonal dynamics of agents
in complex performance environments involving robotic and
engineering systems, commercial companies, academic in-
stitutions, and sports teams. Our work suggests how global
system structure and organization is an emergent property
of local subsystem dynamics, as predicted by Kauffmann
(1995). It shows how dynamical systems exploit surrounding
constraints to shape the functional, self-sustaining patterns of
behavior that emerge in specific performance contexts. Co-
evolving adaptive behaviors of system components within
critical regions of state space are typically emergent because
of the evolved coupling between system components (e.g.,
an attacker and defender in a dyad). In such systems, behav-
iors can emerge out of fluctuations created by interactions
between interdependent constituents of the system (e.g., in
sports the moves of an attacker and defender in a 1:1 dyad).

Random interactions between system components can alter
into more organized forms of interactions as one key system
parameter (i.e., control parameter) changes in value. When
such self-organizing systems are poised in a state near this
value, different types of behavior can emerge depending on
the value of the control parameter.

In such complex adaptive systems, because of the emer-
gent nature of information used to support cognition, decision
making, and action, it may be difficult to predict or prescribe
large sequences of agent interactions in advance. These find-
ings suggest that organizational decision making and plan-
ning in multiagent systems such as team sports should be
predictive and adaptive in nature and not static and predeter-
mined.

In the present study, susceptibility of global system
behavior to localized relations and interactions between
agents was revealed by analysis of collective variable values,
which showed that small differences in initial conditions
could lead to large differences in the final state of the system.
Phase space data revealed how slight relative differences
in initial conditions led to large differences observed in the
dynamics of the interpersonal interactions and outcomes in
the dyads. Through the collective variable data plots, we
observed that dyadic system behavior was always attracted
to a minimum (i.e., zero crossing). In every simulation
of the 1:1 subphase of rugby union, it was possible to
identify a region of the performance landscape where the
players in the dyad were engaged in coadaptive moves in
attempting to optimize their relative fitness, the region of
self-organized criticality. These findings are consistent with
our proposal that the decisions and actions of subsystems in
large organizations could be modeled as a chaotic attractor.
Therefore, in complex multiagent systems, attractors can be
viewed as privileged configurations or states toward which
first- and second-order constraints channel the system.
System design to enhance adaptive behavior in multiagent
collectives should be predicated on a good understanding
of the unique first- and second-order constraints that shape
system attractors in a particular performance environment.
In fact, these constraints could form the basis of realism in
designing specific training simulations in team sports. Adap-
tive behavior for athletes in team sports is self-organized
behavior that emerges from the dynamics of the interactions
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between a structured environment and a player, which are
governed by simple control laws under physical and infor-
mational constraints (Warren, 2006). In this way, adaptive
behavior involves goal-directed action that is tailored to the
constraints of specific performance environments.

The importance of environmental information for adap-
tive behavior was also observed in the critical fluctuations
for the trajectories of individual agents in the dyads. De-
cisions cannot be accurately prescribed in advance in such
open, indeterminate systems and ongoing interactions with
the environment are necessary to ensure system adaptivity.
The observed fluctuations in system behavior reported in
Figure 4 expressed how the attacker was varying actions to
create information for exploring how to pass the defender.
Because of the emergent decision making of the attacker
(i.e., when to move forward and pass the defender), a phase
transition was characterized by a sudden and continuous de-
crease in angle values until a zero crossing occurred (where
the attacker passed the defender and the defender–attacker
horizontal angle reached the minimum value). As suggested
by Juarrero (1999), because of changes in connection type
(e.g., from nonphysical to physical if contact occurs) or or-
ganizational changes within the dyad (because of relative
spatial proximity to the try line), the observed phase transi-
tion may be interpreted as a new phase of a self-organized
process. These findings provide new insights to interpret the
role of within-agent variability of decisions and actions in
subsystems of collectives.

Another feature of the collective variable data that sup-
ports the view of attacker–defender interactions as a self-
organizing, coevolving adaptive process is the different
shapes of the collective variable patterns. As stated previ-
ously, system initial conditions were set from the moment
when second-order constraints emerged (i.e., the moment
that the player’s actions became mutually entrained). This
idea signifies that every time a trial was performed, the initial
conditions were slightly different (see Figure 4). These slight
variations in initial conditions led to different shapes of the
collective variable and consequently to different outcomes.
Again, this is a key finding suggesting that few outcomes for
system behavior can be completely prescribed in advance.
The data suggest that complex multiagent systems may be
difficult to control with traditional, hierarchical modes of de-
cision making, planning, and management. Further, the more
connections between system components, the more challeng-
ing it is for an executive mode of control to regulate the
precise nature of the interactions between subsystem agents.

The findings of the present study are similar to data re-
ported by Richardson et al. (2007), who found coordination
tendencies among participants coupled by visual informa-
tion demonstrated that intentional and unintentional inter-
personal coordination in noncompetitive tasks (e.g., rocking
chair movements) was constrained by the self-organizing dy-
namics of coupled agents as a system. In the present study,
system initial conditions, as well the shape of the collec-
tive variable, emerged because of agents’ interactions to-

ward mutual entrainment, which were sustained by the in-
formation fields (i.e., visual information fields maintained
by perception-action couplings) created by the system itself.
The localized interactions in the 1:1 competitive subphases
led to the emergence of self-organized criticality, which ben-
efited the multiagent system (i.e., the team) by creating new
options for adaptive behavior (van Orden et al., 2003).

In his modelling of evolutionary systems, Kauffman
(1993) named this property self construction, a term
which adequately captures how interpersonal interactions in
attacker–defender dyads can lead to different system out-
comes in the performance environment of team sports. Self-
construction of decisions and actions is an important pro-
cess to understand and research in future studies of behavior
in complex multiagent systems. This process fits well with
robotic design modules based on empowerment and facil-
itation of individual agents to explore the environment for
new information to regulate trajectories. The findings sug-
gest that designers of multiagent adaptive systems should
avoid attempting to control the uncontrollable by trying to
eradicate variability in decision making and actions of in-
dividual agents. Rather, global system performance is more
likely to be enhanced by developing the adaptive behaviors
of agents. For example, robotic designers could enhance the
amount of variability included in training environments, and
in team sports, coaches could achieve a similar objective in
the training drills that players face during subphase prac-
tices. This strategy will provide a platform for agents to learn
how to make decisions and perform actions that stabilize or
destabilize subsystem interactions so that they may work in
a collective manner or independently to achieve task goals.

In the present study, collective variable patterns success-
fully described the nonlinear interactions that occurred be-
tween the agents of the dyadic system. These nonlinear inter-
actions created fields of information that drove the subsystem
of agents to a metastable region of self-organizing criticality
with three possible states (Kauffman, 1993; Kelso, 1995). In
complex organizations, such as team sports, these regions are
fertile areas for observing creativity and flexibility in deci-
sion making and actions in enhancing performance because
of the rich and diverse patterns of behavior that emerge from
the localized agent interactions (Bak & Chialvo, 2001).

Specific values achieved by the collective variable revealed
the state toward which the dyadic system was being attracted
to regions of self-organizing criticality. Because of slight dif-
ferences in initial conditions, the final state achieved by the
system was quite different, again signaling how global orga-
nization outcomes are challenging to prescribe in advance.

By plotting the evolution of the collective variable pat-
terns from the attacker–defender interactions in the present
study, it was possible to observe what happens at each mo-
ment in time, as well as to characterize the type of phase
transition that took place (i.e., changes in system organi-
zation or changes in the dyadic components’ connection).
However, for both situations (i.e., try or tackle), the fluctua-
tions that occurred in the collective variable because of the
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emergence of second-order constraints led the system to a
state of nonequilibrium (i.e., the region of self-organizing
criticality) and one of the following situations could emerge:
(a) For try situations, the probability of a new state of organi-
zation emerging (e.g., attacker reached the try line) increased
because of a breaking of symmetry in the initial structure of
the dyad (i.e., the attacker was now the player closest to the
try line); and (b) for tackle situations, after physical contact
takes place and the players fall to the floor, according to the
rules of the game the ball must be released; from that mo-
ment, the function of each player in this local system is over
(i.e., the ball on the floor is available to every player and there
is temporarily no defined attacker or defender dyad).

Both situations exemplify the process of self-construction
in multiagent interactions and how the information flows
drive the collective system to a desegregation of its compo-
nents. In other words, the defender and attacker created a non-
linear interpersonal relation sustained on information flows
that attracted this local dyadic system to its own desegrega-
tion, leaving its agents free to merge into other new localized
subsystems with other agents (see Kauffman, 1993). These
observations illustrate how globalized decision making and
actions can emerge to influence the structure and organiza-
tion of collective artificial systems as agents cooperate and
compete with each other in localized emergent subgroupings.

The first derivative data allowed us to analyze the rate of
change of relative position between attacker and defender.
The data from the present study illustrated how 1:1 dyads in
rugby are a self-organizing system with the ability to create
the potential that moves the global system to the region of
self-organizing criticality (Kauffman, 1993; van Orden et al.,
2003). That potential seemed to be predicated on the velocity
of each player inside the basin of attraction, which altered
the players’ relative position (Passos et al., 2008).

Phase space represents all the trajectories that a system
can achieve in state space. Despite the potential for a huge
number of trajectories to emerge from the players’ inter-
actions, typically system behavior always flowed to a low
dimensional attractor (whose behavior can be described with
reference to two or three variables), captured by the three
states previously presented. These data are harmonious with
Kauffman’s (1993) observations that typically complex sys-
tems become boxed into a tiny volume of state space even
though their behavior within that small volume is chaotic
in the precise sense of high sensitivity to initial conditions.
Behaving as a chaotic attractor means that the dyadic system
displayed nonlinear characteristics because of context sensi-
tivity, microvariations in the initial state and the consequent
interdependence of decisions and actions of both agents in-
volved in the dyad. For similar conditions, the behavior of
the collective may be different, although this range of be-
havioral solutions clustered around a specific pattern. The
dynamic patterns that characterized the three possible states
formed because of the information flows that arose during
performer-environment couplings in the dyad’s course of ac-
tion.

These findings emphasize the importance of indetermi-
nacy in multiagent systems. They are quite different from
results obtained in traditional experimental and theoretical
paradigms for studying decision making in team sports,
which usually focus on the development of internal models to
make decisions rather on the agent-environment couplings.
Rather, the outcomes of the present study emphasized the
view that decision making is a process that emerges under
ecological constraints (i.e., boundaries created because of
agents interactions; Araújo et al., 2006; Juarrero, 1999). The
ApEn value provided a measure of dyadic system complexity,
and the results confirmed that system complexity increased
with changes in relations between players. In this article, we
use the term complex in the systems oriented manner (i.e., to
describe systems composed of two or more interacting parts).
The data suggested that system complexity increased as the
relation between the agents changed (i.e., from nonphysical
to physical). It is interesting to note that with decreasing
interpersonal distance, more causes emerged (e.g., grasping,
tackling, pushing or pulling the attacker), allowing the dyadic
system to produce multiple effects (i.e., an attacker’s efforts
to release the ball with two legs held by a defender, with
the defender tackling just one leg or the chest). According
to Bar-Yam (2004), these observations are a key feature of
increasing complexity in a system’s behavior. In addition,
the interaction among variables (e.g., grasp power, level of
fatigue, fear due to an unsuccessful previous attempt, body
contact area with the opponent, relative position of both play-
ers at the contact point) that influenced each physical contact
situation (i.e., tackle) was unique and thus context depen-
dent. In that line of reasoning, an increase in complexity can
make decisions and actions more context dependent.

The results of the present study illustrate how no one
specific optimal decision can be prescribed in advance by
multiple agents in dynamic performance contexts such as
rugby dyads. Inside the collision zone in rugby dyads, the
decision when to intercept an attacker actually emerged for
defenders, sustained by the informational constraints of the
context (e.g., attacker actions). These results are harmonious
with ideas from ecological psychology, which advocate an
emergent approach to decision making with the necessary
information to make appropriate decisions available for col-
lection from the environment (e.g., Araújo et al., 2006; Hris-
tovski, Davids, & Araújo, 2006). Data suggest that infor-
mation from an attacker’s actions is geared by the specific
moves of the defender, supporting the conceptualization of
attacker–defender dyads as a highly interconnected coadapt-
ing system.

Regarding methods for studying adaptive behavior in com-
plex, multiagent neurobiological systems, the present study
has shown that the use of techniques such as videogramme-
try and artificial neural networks allows the collection of data
directly from the performance field in a continuous fashion.
Similarly, it has indicated how the use of nonlinear tools such
as phase space analysis and measures of complexity such
as ApEn can provide a powerful basis for testing different
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theoretical rationales for modeling interpersonal dynamics in
complex organizations conceptualized as dynamical systems
sustained by information fields. With this method, it is possi-
ble to analyze how a complex interpersonal system searches
task and environmental constraints for information, leading
to emergent decisions and actions that allow the system to
functionally interact with the environment.

For future research, we suggest two levels of analysis: (a)
extending this method to situations that involve more agents
in subsystem interactions (e.g., subphases of 2:1, 3:2, 4:3)
and (b) applying this method of analyzing decision making
and actions to other organizational contexts such as artifi-
cially intelligent systems. These investigations are required
because, as Kauffman (1993) pointed out, with increasing
levels of system complexity-that is, as the number of system
degrees of freedom increases-the potential for interaction
increases and the likelihood of phase transitions increases.
Researchers need to understand whether localized subsys-
tems varying in structure exhibit greater tendencies for phase
transitions. Regardless of organizational context, one com-
mon feature needs to be addressed: the discovery of relevant
collective variables.

Last, our model and data showed the value of interpreting
variability in the interpersonal dynamics of agent behavior
to understand decision-making processes in organizations as
complex systems (i.e., systems composed of two or more
interacting parts). These findings are harmonious with data
from recent research in the behavioral neurosciences high-
lighting the functional role of variability as organisms adapt
to changing environmental constraints, even altering stereo-
typical sequences of behavior in response (for examples, see
Tumer & Brainard, 2007; Faisal, Selen, & Wolpert, 2008).
Kelso (1995) proposed how fluctuations are continuously
probing complex systems in nature, allowing them to feel
their stability and providing an opportunity for them to dis-
cover new patterns of behavior. The results indicated how
metastability provided a platform for a universal decision-
making process for switching between and selection among
different states of organization in complex systems. When a
multiagent system enters a metastable region, it is a fluctua-
tion that decides which possible trajectory will be selected,
not decisions prescribed in advance. Even if we know the
initial values and boundary constraints, there are still many
states available to a complex system among which it chooses
as a result of fluctuations (Prigogine, 1996; see also, van
Orden et al., 2003). In organizations such as team sports,
fluctuations in interpersonal dynamics can be described by
a collective variable whose behavior is governed by non-
linear interactions among complex system agents (e.g., the
players in a team game). This point was highlighted by the
observation in the present study that at specific values of
interpersonal distance with the emergence of second-order
constraints, nonlinear interactions among attackers and de-
fenders created information flows that led the system far from
equilibrium. A system that is nonlinear, dynamical, adaptive,
and evolving because of an embedded interaction with the

environment far from equilibrium is poised for a phase tran-
sition because of a change in its structural organization or
in type of connection among its components. In these cases,
fluctuations are the rule and the interpersonal dynamics of
interacting agents in organizations will be attracted to one of
the available system states. We have argued that such data
are harmonious with the model of coevolving adaptation as-
cribed to evolutionary processes by Kauffman (1993) and
that further work is needed to verify this theoretical frame-
work for studying adaptive behavior in a variety of other
multiagent systems.
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