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a b s t r a c t

In this paper, key concepts in ecological psychology and nonlinear dynamics exemplify
how learning design can be shaped by ideas of self-organization, meta-stability and self-
organized criticality in complex neurobiological systems. Through interactions with
specific ecological constraints in learning environments, cognition, decision making and
action emerge. An important design strategy is the use of different types of noise to
channel the learning process into meta-stable regions of the “learner–learning environ-
ment” system to encourage adaptive behaviors. Here learners can be exposed to many
functional and creative performance solutions during training. Data from studies in the
performance context of sports are used to illustrate how these theoretical ideas can
underpin learning design. Based on these insights a nonlinear pedagogy is proposed in
which the role of coaches or trainers alters from a more traditional, prescriptive stance to
the mode of manipulating key interacting task constraints including information, space
and equipment to facilitate learning.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Neurobiological system indeterminacy has been exem-
plified in ‘situated’ perspectives on learning, providing
valuable insights on the development of an embodied
cognition (e.g., Clark, 1997, 1999, 2001; Varela, Thompson,
& Rosch, 1995). The Cartesian view of separating cogni-
tion and body is considered reductive, requiring revision
since the learner may be better conceptualized as an inte-
grated, complex system (Kelso & Engström, 2006; Port &
van Gelder, 1995; Tschacher & Dauwalder, 2003). Learning
takes place in dynamic contexts and the acquisition of
knowledge occurs as a consequence of indeterminate
interactions between learners and the environment (Barab
& Kirshner, 2001).

These advances in embodied cognition emphasize the
learner–environment relationship. This systemic approach
is harmonious with contemporary work on motor perfor-
mance and skill acquisition, influenced by concepts in
ecological psychology and nonlinear dynamics such as
information–action coupling, self-organization, constraints,
emergence, variability and stability of behavior in neurobi-
ological systems (see Davids, Button, & Bennett, 2008;
Handford, Davids, Bennett, & Button, 1997; Kelso, 1995;
Newell, Liu, & Mayer-Kress, 2008; Warren, 2006). Alterna-
tive conceptualizations of processes of perception, cogni-
tion, decisionmaking and action have emerged for studying
intentional behavior in complex, self organizing, neurobio-
logical systems functioning in dynamic environments (e.g.,
VanOrden,Holden,&Turvey, 2003). Thisecologicaldynamics
rationale proposes that the most relevant information for
performance and learning in dynamic environments arises
from continuous performer–environment interactions
(Araújo, Davids, & Hristovski, 2006; Raczaszek-Leonardi &
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Kelso, 2008; Van Orden et al., 2003). In ecological dynamics,
the coupling of perception and action sub-systems is based
on themutuality and reciprocity of neurobiological systems
and their environments. Under this synergy, insights from
psychology, biology and physics have been integrated to
enhance understanding of how neurobiological systems
functionadaptively in theireco-niches (e.g.,Davids&Araújo,
2010; Davids, Button, Araújo, Renshaw, & Hristovski, 2006;
Warren, 2006). Performanceand learningare constrainedby
key featuresof theorganism–environment system including
the structure and physics of the environment, the biome-
chanics and morphology of individual and specific task
constraints. Adaptive, goal-directed behavior emerges as
neurobiological systems attempt to satisfy these interacting
constraints. For these reasons, ecological dynamics proposes
that the study of neurobiological cognition and action
should avoid ‘organismic asymmetry’ (Dunwoody, 2007)
and instead should be aimed at “.phenomena within the
organism–environment synergy rather than within the
organism per se.” (Beek & Meijer, 1988, p. 160; see also
Turvey & Shaw, 1995).

Developing a sound theoretical rationale for identifying
and manipulating the major constraints on learners
provides a principled basis for the design of learning
programs (e.g., Araújo, Davids, Bennett, Button, &
Chapman, 2004; Davids et al., 2008). These ideas suggest
that psychologists, educators and trainers should act as
facilitators to guide learners’ exploratory activities as they
seek to assemble solutions for pre-specified action goals
(see Barab et al., 1999). In this view, the individual learner
is an independent component amongst an array of influ-
ential constraints within the learner–environment system.
The emergence of learning is closely coupled to the type of
constraints present in the specific performance context
(Kelso, 2008). In nonlinear dynamics it has been shown
how complex neurobiological systems continuously adapt
and change their organizational states through processes
of spontaneous self-organization (Kelso, 1995; Newell
et al., 2008; Thelen, 2000). These ideas are predicated on
analyses of evolutionary complex systems demonstrating
how they transit between states of ordered stability and
instability as they adapt to changing constraints (e.g.,
Kauffmann, 1995). Meta-stability is an important charac-
teristic observed in complex systems when they are poised
between states of order and instability (Kelso, 2008). Meta-
stable states have been defined as ‘dynamically stable’
states which allow systems to remain poised between
stability and instability (Kelso, 1995). It has been observed
that, in the meta-stable state, rich interactions can spon-
taneously emerge within complex systems when previ-
ously uncorrelated system components or processes
suddenly become interconnected under constraints
(Guerin & Kunkle, 2004; Juarrero, 1999). Meta-stable states
in complex neurobiological systems are significant because
varied and creative patterns of behavior can emerge as
individual system components co-organize or co-adapt as
specific goals are achieved.

In the study of learning design, it is important to
understand how meta-stability in neurobiological systems
can be harnessed to facilitate learning and system change
along different timescales (Hristovski, Davids, & Araújo,

2006, 2009; Passos et al., 2008). In this paper we propose
how the idea of ‘co-adaptive moves’ in the meta-stable
region of complex systems can contribute to our under-
standing of learning design (Kauffmann, 1995), and we
illustrate how these ideas can be integrated in a nonlinear
pedagogy.

2. Key differences between linear and nonlinear
systems

We start by identifying somemajor differences between
linear and nonlinear systems in nature. In linear dynamics,
a large change in a system’s behavior needs to be preceded
by a large change in its cause(s). In nonlinear dynamics
a minute change in system (micro) dynamics may also
produce large, even qualitative changes in the system’s
(macroscopic) behavior or performance. In other words,
a linear system’s behavior is always proportional to its
causes, while nonlinear systems can demonstrate both
types of properties. Many systems studied in science are
nonlinear in nature, although they have been traditionally
studied with the so-called linear approximation method
(i.e., in a linear regime) because that has been easier for
analytical purposes. In short: cause-effect proportionality is
a hallmark of linear behavior and non-proportionality is
a hallmark of nonlinear system behavior. A major impli-
cation of this key idea for learning design is that small
changes to practice task constraints, such as information
present or technical changes to equipment, may result in
significant changes in learners’ behaviors.

A second, important difference between these two
broad classes of systems is that in linear systems, a single
cause can generate only one behavioral effect, while in
nonlinear systems one cause may have multiple behavioral
effects. That is, linear systems are always mono-stable
and nonlinear systems may be mono- and multi-stable. In
nonlinear systems, the property of multi-stability can be
observed through careful manipulation of system param-
eters. The capacity to alter system parameters is considered
as the third characteristic of nonlinear systems with an
emphasis on parametric control. Parametric control implies
that by changing specific parameters, coaches or trainers
can effectively guide a learning system to explore the
functionality of different organizational states. This
strategy will expose a learning system to task variability to
discover functional states of organization in adapting to
environmental and task constraints.

A related characteristic which differentiates linear and
nonlinear systems is the role of ‘noise’ in the system. Tradi-
tionally, noise is defined as an uncontrollable part of system
dynamics, which has led to it being viewed as undesirable in
control systemsanalyses. In linear systems,whicharemono-
stable, noise almost always plays a detrimental role in
producing undesired system output variability (e.g.,
Broadbent, 1958). In contrast, in multi-stable nonlinear,
dynamical systems, noise can play a functional role by
enhancing the probability of system transition between
multiple states. The interjection of noise or signal variability
can contribute to the exploration of multiple solutions to
a performance goal by a learning system. In this way noise
has the capacity to enhance the flexibility of a learning
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system (such as a child or an adult seeking a movement
solution in a novel task) (see Schöllhorn et al., 2006).

In summary, these four significant characteristics
of nonlinear behavior, i.e., non-proportionality, multi-
stability, parametric control and the functional role of
noise, can inform learning design. They are important
because they underpin the process by which learners as
complex neurobiological systems can adapt to challenging
performance environments. In the next section, we exem-
plify how these concepts can support a nonlinear peda-
gogical approach in the performance and learning context
of sport, physical activity and exercise.

3. The role of constraints in facilitating motor
learning: a basis for a nonlinear pedagogy

The conceptualization of humans as belonging to a class
of nonlinear dynamical systems has logically led to the
development of a nonlinear pedagogy (Chow et al., 2006;
Renshaw, Chow, Davids, & Hammond, 2010). In nonlinear
pedagogy, it has been argued that the process of learning
can be guided by manipulation of key constraints that act
on each individual (Davids, Button, & Bennett, 1999). From
this perspective, different types of constraints can act as
behavioral information to regulate action, functioning as
system control parameters. To exemplify, a performance
variable such as speed or force of movement, when
systematically varied, might result in a change of learning
system organization, illustrating how system parametric
control may occur. This kind of control has been researched
extensively in the constraints-led framework on motor
learning (e.g., Araújo et al., 2004; Davids, Glazier, Araújo, &
Bartlett, 2003; Davids et al., 2008). Newell (1986) classified
constraints that parameterize learning dynamics as task,
personal (i.e., organismic) and environmental. Task
constraints in sport contain relevant information for
learning a specific activity such as: rules of a game, certain
contextual sources of information, performance areas and
equipment, and number of individuals involved in the
activity. On the other hand, personal constraints refer to the
specific and unique characteristics of each learner which
include: his/her morphological, psychological, physiolog-
ical characteristics, for example. Finally, gravity, ambient
light or temperature, as well as socio-cultural influences
are some examples of environmental constraints which all
learners have to satisfy to create performance solutions
(see Chow et al., 2006 for a detailed review of the different
categories of constraints).

These three classes of constraints do not influence the
learning process independently, but rather form complex
interacting configurationswhich shape the perceptual-motor
landscape of the learner in specific directions (Kelso, Fink,
DeLaplain, & Carson, 2001; Newell, 1996). The perceptual-
motor landscapeof a learner formsahypotheticalworkspace
where all potential movement solutions for an individual
learnermay exist. It is shaped by the interaction of the three
main categories of constraints and forms theperformanceor
learning context for each individual. In nonlinear neurobi-
ological systems, constraint configurations do not prescribe
each learner’s behavior but simply guide it through inter-
action with his/her perceptual-motor systems.

The importance of the perceptual-motor systemand how
it uses information from the performance context is clearly
exemplified by Jacobs and Michaels (2007) in their discus-
sion on ‘Direct Learning’. The lack of dependence on infer-
ence and cognitive processing as mechanisms for the
acquisition of movement skills was highlighted. Instead, an
emphasis on how information from the environment, in the
form of ambient energy arrays, is considered critical in
channeling learners to learnmovement skills. Central to their
discussion, Jacobs andMichaels (2007) illustrated learning as
the process of change in the relevant informational param-
eters that informsaction. Specifically, the learner’s intentions
and attention to these informational variables change when
learning occurs (see Jacobs and Michaels (2007) for further
discussion). This idea of ‘Direct Learning’, where perceptual
information is directly mapped to action, is relevant to
understanding how goal-directed behaviors emerge under
the confluence of various constraints in the performance
context. It is thepresenceof information richarrays of energy
in the performance context that guides action and the
mapping of such higher order properties of ambient energy
to action changes with learning.

It is, therefore, not surprising that the interaction of key
constraints leads to individual differences in how learners
assemble their unique movement solutions. This is an
important advance since many traditional theories of
learning recognize the existence of individual differences
between learners, but fail to provide a comprehensive
analysis of howsuch individual differencesmaybe designed
into learning programs. In contrast, a nonlinear pedagogical
approach provides a principled, scientific framework for
understanding individuality and applying the ideas in
learning design (Davids et al., 2008; Phillips, Davids,
Renshaw & Portus, 2010). Briefly, even if task and envi-
ronmental constraints were considered as constant over
some period, we can observe that the learning dynamics of
each individual will be different since the interacting
configurations of constraints will differ between learners.
The distinctive configurations of constraints between
learners are manifest in how each individual attempts to
satisfy specific task constraints during practice. Hence, it is
futile to try and identify a common, idealizedmotor pattern
towards which all learners should aspire (e.g., learning
a classical technique in a sport like tennis or cricket). This
idea is prevalent in traditional approaches tomotor learning
and has tyrannized talent development programs for
some time (Phillips et al., 2010). Different individual
constraints suggest that it is dysfunctional to seek to
establish universal optimal learning pathways to which all
learners should adhere. Individual learners can often
experience discontinuous, qualitative changes in their
performance due to the presence of instabilities in their
perceptual-motor landscape. For example, these instabil-
ities may be due to growth, development, maturation and
learning across the lifespan.While coaches or trainersmight
slowly vary the unique constraint configurations on each
learner, the perceptual-motor landscape may undergo
change of stable performance and learning pathways into
unstable ones, requiring learners to quickly (i.e., on a much
shorter time scale than the long term learningprocess itself)
adapt to a newly emerged stable, movement solution. This
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outcome is a product of the collaboration of three nonlinear
properties: cause–effect non-proportionality, parametric
(constraint) control andmulti-stability in complex systems.
In this way, nonlinear pedagogy frames the individuality of
learning pathways and individuality of performance solu-
tions for a givenmovement task. Additionally, it needs to be
understood that constraints act on learning systems along
different timescales, from the immediate (at the timescale
of perception and action) to the more long term (at the
timescale of developmental change overmonths and years).
Throughout this paper we note how individual differences
may substantiate the basis for a nonlinear pedagogy in
which the goal of learners is not to re-produce an idealized
movement pattern, but to assemble a personal, functional
movement solution which satisfies the unique configura-
tion of constraints impinging upon them at any instant
in time.

Noise amplifies the exploratoryactivity of the learner and
may guide him/her to discover individualized functional
solutions to a specific task goal (Newell et al., 2008;
Schöllhorn et al., 2006; Schöllhorn, Mayer-Kress, Newell, &
Michelbrink, 2009). Intrinsic movement variability enlarges
the area of solution search in the learner’s phase space (i.e.,
the conceptual space of all possible movement solutions
available for a specific learner as a complex system).

The positive role that noise plays is a feature of neuro-
biological learning in general. A study by Tumer and
Brainard (2007) exemplified how other neurobiological
systems (birds) can functionally adapt their behavior (bird
singing) in the presence of ‘noise’. Bird songs have been
assumed to be highly stable, nearly “crystallized” forms of
motor behavior once learned in a period of months. To test
this assumption, a perturbation to a bird’s auditory feed-
back was delivered in the form of short white noise burst
sequences for higher pitch parts of the song. As a conse-
quence of the perturbation, the birds immediately shifted
the higher pitch syllables to avoid the sound and thus
changed their song. The data showed that even highly
stabilized forms of motor behavior can be changed in
a preferred direction by application of stochastic pertur-
bations to the system. This was an important finding for
learning design theorists because it was observed in a form
of neurobiological behavior which has been traditionally
considered to be a stereotyped. This experiment demon-
strated that noise in neurobiological systems has a func-
tional role in producing subtle variations in well practiced
skills with a consequence of producing highly adaptive
patterns of behavior in ever-changing environments. The
need for flexibility and adaptability was also demonstrated
in recent work by Colunga and Smith (2008) who investi-
gated how young children learn new words by leveraging
on the stability of past experiences with the dynamic
context of the present moment. Schöllhorn and colleagues
have advocated a ‘Differential Learning’ approach, in which
learners experience a variety of movement patterns (thus
providing a ‘noisy’ learning environment), to encourage
development of an individualized movement pattern that
best fits the task dynamics of the performance context. In
one study by Schöllhorn et al. (2006), on acquisition of
dribbling and passing skills in soccer, participants were
exposed to continuous changes in movement executions,

avoidance of repetitions, absence of corrective instructions
and a focus on exploratory practice. This group out-
performed other participants exposed to a traditional
approach that emphasized repetition of an ideal movement
technique. In summary, challenging individuals to perform
different variations of a skill can be beneficial in engaging
learners to search their perceptual-motor workspace for
functional movement solutions by adding ‘noise’ in the
form of movement variability to a target skill (see also
Frank, Michelbrink, Beckmann, & Schöllhorn, 2008;
Schöllhorn et al., 2009).

4. Meta-stability and self-organized criticality

Kauffmann’s (1993) modeling of evolutionary processes
resulting from spontaneous self-organization due to
internal dynamics of a complex system provides most
valuable insights for understanding neurobiological system
dynamics during performance and learning.

He acknowledged how fluctuations in system stability
reflect a general and essential principle of the pattern
formation process in complex systems (see Bak, 1996;
Bassingthwaighte, Leibovitch, & West, 1994; Camazine
et al., 2003; Gisiger, 2001; West & Deering, 1995),
including neurobiological systems (e.g., Gilden, 2001;
Kelso, 1995; Van Orden et al., 2003). Many observations
in science have shown that different kinds of physical,
chemical, biological, psychological, and social systems all
exhibit the same kind of fluctuations whose statistical
character has proven to be puzzling and ubiquitous (Kello,
Beltz, Holden, & Van Orden, 2007).

Research has shown how sometimes micro-level system
fluctuations can lead to phase transitions so that new states
of systemorder emerge. Kauffmann (1993) noted howphase
transitions in system evolution are most prevalent in meta-
stable regions of system state space in which co-evolving
agents or components are poised between stability and
instability. In this region they compete to modify system
dynamics, a process known as co-adaptation. In neurobio-
logical systems, co-adaptive behaviors can emerge out of
fluctuations created by interactions between interdepen-
dent constituents of the system. Complex systems are most
susceptible to fluctuations near their critical points (for
reviews, see Bak, 1996; Solé & Goodwin, 2000; Sornette,
2004). When such self-organizing systems are poised in
a critical state near this value, different types of behavior can
emerge depending on the value of a system control param-
eter. Near the critical state, interactions between compo-
nents and nearest neighbors can become correlated, in
a type of domino effect, capturing global system interactions
and leading to a sudden reduction from multiple options to
one (a sudden collapse in the critical state). As we observe
later, criticality actually provides the platform for a func-
tional mix of creativity and constraint in dynamic perfor-
mance and learning environments. It affords new
opportunities for behavior which can fit newly arising
circumstances of behavior. The connection between emer-
gent interaction processes and neurobiological system
fluctuations has its roots in Von Holst’s (1939/1973) classic
studies of coordination in a wide range of biological organ-
isms. These studies identified twomodes of neurobiological
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coordination exemplified among anatomical components of
fish. In one mode, each component (e.g., a fin) produced its
preferred oscillatory pattern of activity regardless of the
actions of other components. Von Holst (1939/1973)
referred to this tendency towards independence of compo-
nents as the maintenance tendency. Another mode was
characterized by a tendency for components to produce in
unison a single, common pattern of activity, referred to as
themagnet effect. Importantly, neithermode by itself creates
the coordination used for swimming in fish. Instead, loco-
motion is accomplished by a balance of these opposing
modal tendencies that gave rise to what von Holst referred
to as relative coordination, which stems from theweakmeta-
stable dynamics of the relative phase X (refer to Fig. 1). Von
Holst’s (1939/1973) work demonstrated how complex
system components can work together to create a globally
coherent pattern of activity, yet each component maintains
its potential for independence. The balance of relative
coordination allows system components to flexibly reorga-
nize themselves into a variety of stable patterns of activity.
Von Holst’s (1939/1973) hypothesis of relative coordination
has been elaborated to explain a wide variety of neurobio-
logical system coordination including human movement
patterns (e.g., Kelso & Clark, 1982; Rein, Davids, & Button,
2009; Schmidt, Beek, Treffner, & Turvey, 1991; Schwartz,
Amazeen, & Turvey, 1995; Turvey, 1990).

Further exemplification can be observed in the analyses
of performance in actual football matches (Mendes,

Malacarne, & Anteneodo, 2007) that show behavioral vari-
ables such as inter-touch times demonstrating a long-tailed
q-gammadistribution (see Fig.1b), that are characterized by
highly intermittent dynamics. Parameters of these distri-
butions signifying the average number of task phases
forming complex compound tasks show that players’ task
solution dynamics dwell for a longer time around 2–3 sub-
tasks. However, there are also extremelycomplex individual
compound task solutions which contain more sub-tasks
that need to be completed before a pass can be made to
a team mate (as an example). The task solution space in
football performance is meta-stable and by varying the task
constraints of small-sided games, the coach may manipu-
late dynamic parameters of the system so that the system
itself produces different frequencies of more simple, to very
complex compound task solutions. Controlling such meta-
stable dynamics through manipulating task constraints
would enable learners to be embedded in varying repre-
sentative contexts of their sport. Future research should
focus on how the dynamics and, consequently, the proba-
bility distributions of such meta-stable systems change as
a function of task manipulations.

4.1. Meta-stability in neurobiology

Relative coordination has since been replaced with
the more general concept of meta-stability that originates
from principles of thermodynamics. Meta-stability is

Fig. 1. An example of a meta-stable movement system of a weakly unstable type. a) A weakly unstable system. The task solution of the learner may dwell for
some period close to some already acquired solution x ¼ 0, but intermittently escapes and explores other available solutions. Such a situation provides the system
the opportunity to be in a variety of stable patterns of activity. b) The probability P(x) of learner’s task solution x. It escapes from time to time away from the usual
task solution x ¼ 0 and explores other possible solutions.
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characterized by ‘partially organized’ tendencies in which
individual elements of a complex system (e.g., neurons,
muscles, individuals in a group) are neither completely
independent (local segregation), nor fully linked in a fixed
mutual relationship (global integration). In a complex
neurobiological system these characteristics can be
observed near its critical point as the system shifts between
ordered and disordered phases. A meta-stable regime in
a neurobiological system is a state of organization between
the idealized states of complete interdependence between
interacting components (e.g., patterns of phase and
frequency synchronization between regions of the brain or
between body limb segments) and total independence
of component parts from each other (e.g., each local region
of the brain or limb segment expresses its own dynamic
properties without interactions with other local regions or
segments). Specifically, in the meta-stable regime of
dynamically stable systems (refer to Fig. 1), intrinsic
differences between individual components are of suffi-
cient magnitude that they can ‘do their own thing’, while
still retaining a tendency to cooperate. In this way global
integration, in which component parts are locked together,
is reconciled with the tendency of the parts to function as
locally specialized autonomous units. Meta-stable coordi-
nation dynamics permit neurobiological systems to exhibit
a far more variable, fluid form of organization, in which
tendencies for integration and segregation coexist at the
same time (Kelso, 2003).

In this region of system state space, a difference in
circumstances that favors one behavioral option over
another, no matter how slight, breaks the symmetry of
equally poised options (Van Orden et al., 2003). The sand
pile model developed by Bak, Tang, and Wiesenfeld (1988)
described the existence of self-organizing criticality (SOC)
in nature. These sudden and abrupt (i.e., catastrophic)
transitions in system organization are due to self-orga-
nizing behaviors that evolve through dynamical interac-
tions between system elements and are not driven by
a peripheral agent.

In the study of cognition, Van Orden et al. (2003)
showed how ‘criticality’ emerges from a fine balance
between constraints on neurobiological systems. Criticality
allows an attractive mix of creativity and stability as
systems adapt to changes in dynamic performance envi-
ronments. It creates new options for behavior and allows
the choice of behavior to fit performance circumstances. An
interesting issue for research on learning design is whether
system criticality can be harnessed to facilitate the learning
process. The ideas outlined here suggest that successful
adaptations to environmental changes can emerge during
learning without prescriptive interventions by an external
agent. There is little need for an external agent, such as
a manager, to fine tune in a highly prescriptive way the
constraints of the learning environment.

However, under some sufficiently slow and subtle
external drivers of a system during learning, i.e., brief
instructions or modeling, rate of augmented feedback or an
intrinsic change in a learner’s goal achievement, the
configuration of constraints can self-organize and stabilize
at the point which confines the system into a specific
critical state. Many systems in nature exhibit this kind of
dynamics (for elaborate examples, see Bak, 1996; Dhar,
2006), and this is a significant idea to understand in
learning design. From this perspective, an important
learning strategy could be to ensure that a learning system
is deliberately channeled towards a critical state, where it
can be exposed to fluctuations to induce emergent transi-
tions in behavior.

There is some evidence from the performance context of
team games to support this view, as we elucidate here. The
hallmark of SOC dynamics is the power law distribution of
a relevant variable (e.g., a movement state or its change)
that captures the essence of the system’s behavior (see
Fig. 2). The relevant variable could be the attacker–
defender balance in team games. For example, defensive
sub-systems usually have an advantage over attacking sub-
systems typically during a soccer match. In such instances,
we can observe that many actions emanating from the

Fig. 2. Probability density functions of a meta-stable system of a self-organized criticality type. The figure shows a Power Law distribution and probability of
emergence of a task solution. The usual task solution x ¼ 0 is the most probable. However, the learner explores other solutions as well. The learner is posed stably
in the critical region where spontaneous exploratory changes of different magnitude emerge.
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attackers that only cause small disturbances in the defen-
sive sub-system. However, an abrupt change in the
attacker–defender balance occurs when a goal is scored.
Nevertheless, it is common to observe many small distur-
bances of the attacker–defender balance, but very few
abrupt disturbances that lead the attacking sub-system to
score a goal (which may explain why football matches are
usually low scoring!). This phenomenon can be captured
with a power law distribution as displayed in Fig. 2, and
self-organized criticality can be established as the under-
lying mechanism that explains this system property. It has
also been observed that some variables evolving during
performance of attackers and defenders in the team sport
of rugby union possess a power law distribution, evidence
for the presence of SOC in team games (Passos, Araújo,
Davids, Milho, & Gouveia, 2009).

According to Bak’s (1996) insights, it can be construed
that, in the performance context of team games, most of
the changes in the structural organization of a specific
game can occur through catastrophic events. Team games
are characterized by periods of stability that exist between
intermittent bursts of activity and volatility (Passos et al.,
2009). This intermittency in team games exemplifies the
phenomenon of “punctuated equilibrium”, a cornerstone
of pattern forming dynamics of complex systems
(Bak, 1996).

For example, in 1 v 1 sub-phases of team games,
regardless of the many small fluctuations that may occur in
the dynamics of the attacker–defender interactions, system
stability can be abruptly broken rather than undergoing
smooth gradual transitions. One moment a defender can be
counterbalancing an attacker’s actions, contributing to
micro-system fluctuations, and the next moment the
attacker can suddenly break this symmetrical organization,
moving beyond the defender and creating space. In team
games, attacker–defender systems evolve towards SOC
regions without the direct design of an external agent (e.g.,
a coach). Rather attacker–defender dynamics emerge due
to the influence of self-organization processes in team
game pattern dynamics, a system property not possessed
by any of its parts.

According to Kauffmann (1993, 1995), at this poised
state between order and chaos (i.e., SOC regions), the
unfolding consequences of actions on system components
cannot be predicted. For this reason, in team games, SOC
regions are shaped by the constraints imposed by local
dynamical interactions rules amid agents in close prox-
imity, such as teammates or opponents. In SOC regions,
players’ decisions and actions are ruled by a nonlinear
contextual dependence amongst neighboring players
which affords new opportunities for behavior fitting newly
arising circumstances. To summarize, criticality provides
the platform for a functional fusion of creativity and
constraint in dynamic performance settings like team
games. Undoubtedly, if learning designers can manipulate
relevant task constraints to channel learners towards these
SOC regions, the possibility of observing a myriad of
different functional and creative, emergent actions will
increase. Next, we exemplify the role of meta-stability and
SOC in the acquisition of motor skills in sport and physical
activity.

5. Meta-stability, criticality and skill acquisition

The arguments presented earlier highlighted howmeta-
stability is a functional system characteristic when learning
to perform in complex, dynamic environments. This idea
was neatly demonstrated by data from Hristovski, Davids,
and Araújo (2009) in an experiment on boxers in an
attacker–defender dyad. When scaling the frequency of an
attacker’s jab strikes and manipulating the affective
constraints on both the attacker and defender, the defender
was observed to exploit the enhanced variability of two
modes of defensive action to create a new action combi-
nation. This strategy enriched each boxer’s diversity (i.e.,
inter-mode variability) and the unpredictability of their
actions. This newly created combinatorial mode proved to
be highly adaptive in attaining the goal of the modified
learning task, i.e., to gain performance points and win.

By manipulating the constraints of the learner and his/
her environment, and increasing the amount of variability
designed into the learning task, learners can be led to two
different opportunities: a) finding a functionally optimal
solution for a given class of movements in different sports
(e.g., shot-puts in athletics, passes, dribbling, throwing in
teams games etc.); and b), finding or creating new solutions
or a new class of movements as a solution to a specific task
goal. For this kind of meta-stability to be attained, learning
designers must fine-tune task constraints to lead learners
to the meta-stable state of the perceptual-motor landscape
in the learning environment. The data of Hristovski et al.
(2009) showed how, in the meta-stable state, learners can
find it easier to assemble functional and novel movement
solutions to satisfy the task constraints imposed on them
during the process of learning. The hallmark of meta-
stability and the type of exploration activity of the learner is
a bi/multi-modal distribution function of the states of
a relevant variable (see specifically Fig. 3c and d). Since the
system is dynamically stable, variability needs to be
enhanced so that transitions between the different move-
ment states can be achieved. The variability in this type of
meta-stability is generated by careful tuning of the task
(e.g., punching frequency) and personal (e.g., affective)
constraints. Thus, the magnitude of movement variability
that is functional is constraints dependent.

The process of acquiring new movement skills can
benefit from the presence of functional variability. For
example, Chow, Davids, Button, and Rein (2008) demon-
strated how successful participants learning a novel ball
kicking task acquired new preferred movement patterns
after a period of increased movement pattern variability. It
is possible that the high variability in movement patterns,
prior to the transition of a new preferred kicking pattern,
emerged during a period of high system meta-stability
when appropriate task constraints were established in
a learning context (a suitable task goals to direct search for
functional movement solutions that are individual-specific)
(See Chow et al., 2008).

Other relevant research has been conducted in social
performance contexts on groups in team sports. As noted
earlier, Passos et al. investigated the behavior of attacker–
defender dyads in rugby union discovering that it was ruled
by a power law distribution as in Fig. 2 (Passos et al., 2009).
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This finding signified that dyadic (i.e., attacker v defender)
system behavior in team sports evolves throughout SOC
regions poised at the edge of chaos, where the players were
equally likely to act independently and inter-dependently
in performance. In this region of criticality, it was clear that
players’ decisions and actions are governed by local emer-
gent interactions rules rather than a priori instructions
provided by external agents (such as coaches, teachers,
parents, significant others). These insights provide some
relevant consequences for learning design in group training
contexts like team sports, when considered as complex
systems. Too much prescriptive advice on decision making
and action should be avoided in practice, for example,
when individual performers are encouraged to undertake
drills during training. Over-emphasizing prescription
might lead learners to highly stable behaviors (i.e., deep
attractors that are robust to external perturbations),
decreasing the ability to adapt to dynamic performance
environments. These findings verified how learning envi-
ronments should be designed in a nonlinear pedagogy.
Submitting learners to this sort of learning design philos-
ophy increases their attunement to relevant information
constraints, as well as allowing them to calibrate their
movements to key informational variables, leading them to
a range of functional decisions and actions (Araújo, Davids,
Chow, & Passos, 2009).

Like training in individual activities, an important
pedagogical strategy in group training is to channel learners
to SOC regions, where systems may be poised for

a transition. In these regions, successful learning can occur
as individuals seek to adapt to dynamic environmental
constraints (Davids et al., 2008; Renshaw et al., 2009).
Through task constraints manipulation, it is feasible to
create learning environments with constraints that are
representative of those that players will face during
performance (e.g., small-sided games) (Renshaw et al.,
2010). This approach to learning design in team games
drives individuals towards SOC regions that emerge during
attacker–defender interactions in the game. For example,
recentwork conductedwith the AustralianWomen’sWater
Polo Team at the Australian Institute of Sport provides
a practical insight to understand how the effective manip-
ulation of task constraints can lead performers towards SOC
regions (see Chow et al., 2009). This directing of search
involved, for example, the use of huge Swiss balls to occlude
vision while taking shots, the use of rubber tubing for per-
turbingplayers’ body and arms during shooting practices in
small-sided-games, and the use of various modified
equipment (e.g., different weighted balls for passes and
reception). The need to change individual constraints (e.g.,
to develop technical skills) can also emerge when
performers cannot adapt to continuously changing envi-
ronmental conditions (e.g., respond to a perturbation
provided by an opponent). In these learning situations,
coaches or trainers need to develop representative task
designs through task constraints manipulation (e.g., adding
or changing new rules; increasing or decreasing field
dimensions; modifying equipment). A task representative

Fig. 3. Examples of various states in systems with meta-stability of a weakly stable type. a) An example of stable movement dynamics. For a control parameter
value k ¼ 0.11 the movement system resides in the attractor, i.e., task solution x ¼ 1.57. The intrinsic noise makes the system fluctuate close to that state
(represented by arrows). b) For the same value of the control parameter the probability of finding the learning system in another state other than x ¼ 1.57 is low.
The system explores only a tiny portion of the possible task solutions. c) An example of a meta-stable state of a weakly stable kind. As the control parameter, i.e.,
a constraint, is varied and attains value k ¼ 0.288, there are already two weakly stable degenerate (i.e., equal minima) states. As a consequence of intrinsic noise
and the system’s weak stability, it switches interchangeably into two modes x ¼ 0 and x ¼ 1.2 (represented by dashed arrow). The task solution x ¼ 0.6 is an
absolutely unstable point that repels the system towards one of the weakly stable states. d) In this situation, the movement system explores a much wider area of
the possible states as exemplified by the area occupied by the probability density function. It is important to note that both the control parameters (constraints)
manipulation and the noise cooperate in system’s dynamics, resulting in stability or meta-stability for the system.
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of the context towards which one intends to generalize, is
one where the information is diagnostic, to allow attuned
players to detect and use the informational variables that
guide them to the task goal (Araújo, Davids, & Passos, 2007;
Araújo, Davids, & Serpa, 2005). A change in constraints
can act as a catalyst for new movement patterns to emerge
by helping to induce more functional variability in the
learner.

To summarize, task constraints manipulations can drive
learning systems towards a SOC region poised for a transi-
tion. In this region of system phase space, new coordination
patterns and actions are more likely to emerge which
enhance the learners’ attunement to sensitive information
available in a performance context.

6. The role of noise in learning environments

As noted earlier, the introduction of noise, in the form of
random variability, to a system can allow exploratory
behaviors to surface and is critical for movement behaviors
to transit from one pattern to a new adaptive pattern
during learning (Kelso, 1995; Liu, Mayer-Kress, & Newell,
2006; Riley & Turvey, 2002). While it has been recognized
that not all noise is necessarily beneficial, (Hamill, Haddad,
Heiderscheit, Emmerik, & Li, 2006) a key challenge is to
strategically design noise into a learning task to encourage
functional and adaptive learning.

Colored (i.e., correlated) noise has structure to it
and, from a learning perspective, the manipulation of
constraints (especially task constraints) provides move-
ment variability that is constrained to a restricted range in
the motor system degrees of freedom needed by the
learner. The term ‘colored noise’ comes from the analogy
with properties of light in physics. Noise is white when all
its components can equally contribute to the overall power
of the noise, as in white light where different colors
contribute equally to the spectrum. Colored noise, on the
other hand, is a type of noise in which some, usually lower
frequency (e.g., red) components, contribute more than
others, and their relation is exactly or approximately that of
a power law type. In the light analogy, the implication is
that added noise to learning environments should not be
white, but pink or red. For example, note that lower values
of X states in Figs. 1 and 2 are dominant when compared to
high X values and their relation is approximately (Fig. 1),
and exactly (Fig. 2), of a power law type. So, the variability
of those processes is colored.

The inclusion of colored noise in a learning environment
will act as a constraint to perturb the learner to meta-stable
regions of the perceptual-motor performance workspace.
In this region a learning systemwill be poised at the edge of
instability to facilitate possible transitions between move-
ment behaviors that could be dynamically effective for
constantly changing performance situations. This potential
was demonstrated in a study by Hristovski, Davids, Araújo
and Button (2006) who investigated the impact of manip-
ulating target distance on boxing action patterns of novice
boxers. Distance between boxers and a punching bag was
varied and it was found that different scaled-body
distances afforded the emergence of different boxing
patterns (e.g., hooks, jabs, uppercuts). Interestingly, at

a critical scaled-body distance (0.6), boxers were in
a maximal meta-stability state where they could flexibly
switch between any of the boxing action modes. It seemed
that the scaled-body distance value of 0.6 was critical in
pushing the boxer movement system to the edge of insta-
bility, from where each punching mode could be sponta-
neously activated under the task and the perceived
environmental constraints (Hristovski, Davids, & Araújo,
2006; Hristovski, Davids, Araújo, et al., 2006). At other
values of scaled distance this level of flexibility in emergent
actions was not observed.

Thepromotionof discovery-typepedagogical approaches
in recent decades has prompted increased discussion on
effectiveness of these approaches for improving learning.
Such ‘divergent discovery learning’ approaches (e.g.,
Teaching Games for Understanding or Game Sense peda-
gogical approaches in Physical Education) emphasize the
design and delivery of learning activities in a structuredway
so that learning is guided, as learners seek functional
movement solutions within a restricted workspace of effec-
tive behaviors. Clearly, in performance contexts such as
mountain climbing or kayaking, discovery learning based on
randomvariability may not have desirable consequences for
learners. In these circumstances, the difference between
random fluctuations and colored fluctuations in learning
systems needs to be recognized in learning design to ensure
that the type of noise utilized is functional tomeet the goal of
the learning environment. That is, variability infused in
learningdesignneeds tobeconstrained, asweexplainbelow.

The coupling that emerges between a learner and the
dynamic performance environment in team games during
learning implies that it is important to discern the type of
dynamics induced by the co-adaptive movements of
attackers and defenders. The dynamics in such learning
environments are typically complex and stochastic, with
the perception-action dynamics in different settings and
tasks demonstrating different types of variability (random
or correlated (colored) noise). Different types of environ-
mental information variability could have profound effects
on the success of finding new solutions to task goals set
during learning. In other sciences it has been shown that,
correlated (colored) noise can enhance the switching rate
between stable specific modes of behavior more success-
fully than uncorrelated (white) noise (Wio, 2005).

The implication of these data for learning designers is to
determine how constraints can be manipulated to channel
learners towards a meta-stable state where different
movement solutions are available for them to explore.
Performing in such a meta-stable state would lead to high
levels of movement variability, with lots of ‘noise’ in the
learning system. However, with specific manipulations of
task constraints, the ‘noise’ type can be structured. In this
way only ‘selected’movement solutions will be available to
learners as a consequence of the confluence of constraints
for the practice environment. It is a challenge for learning
designers to find the right balance to ensure that the task
constraints are not too tight so that the meta-stable region
is too small, with very little ‘room’ for exploring functional
movement behaviors.

These findings illustrate why more recently there has
been much greater emphasis in exploring how noise can be
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infused in the motor learning process, exemplified by
studies of varying levels of stochastic perturbations present
with different learning approaches (see Schöllhorn et al.,
2009). From this work, it seems that there are implica-
tions for varying the movement solution options for
different skill levels of learners. These ideas suggest that
more options need to be created for advanced learners and
fewer options for novice learners, seeking to establish
stable movement patterns, when designing practice tasks.
This strategy would infuse a relevant amount and type of
noise to place learners in the meta-stable region of
a complex system, with an emphasis on individual differ-
ences in learning.

The role of noise was also highlighted in research work
on acquisition of cognitive knowledge. Kapur (2008)
investigated the role of ‘Productive Failure’ to determine
the impact of differentiated structured questions relating to
Newtonian kinematics on learning. The concept proposed
by Kapur (2008) is similar to the ideas proposed by Bjork
et al. (1994, 1999) on ‘desirable difficulty’ where learners
experience greater performance errors during learning, but
are more successful in retaining knowledge and informa-
tion eventually. Kapur (2008) observed that, while partic-
ipants presented with ill-structured questions experienced
greater initial failure through discussions that were diver-
gent and complex, these same students actually out-
performed students in a ‘well-structured’ question group
on both ill-structured and well-structured problems at
post-test. It seemed that the ‘noisy’ structure for partici-
pants presentedwith ill-structured problems allowed them
to engage in complex analytical discourse that actually
yielded a richer, more meaningful and stable under-
standing of the content. From the perspective of functional
variability, it is possible that participants from the ill-
structured group could have been searching a larger phase
space of available cognitive solutions for the cognitive task
at hand. More interestingly, Kapur (2008) suggested that
one of the strengths of a ‘productive failure’ approach was
that some form of structure could indeed be present for
participants in the ill-structured group (although not in an
organized and explicit format), that emerged from within
rather than due to the influence of an outside agent
(a teacher for example). This observation is harmonious
with explanations of how emergence of action could
surface and be self-organized as a consequence of the
interaction among system components, rather than as
a result of an over-arching external authority.

During motor skill learning when noise can be incor-
porated, free competition between solutions will exist, and
coaches or trainers do not risk being too prescriptive in
directing learners in acquiring decision-making skills. Such
insights can provide impetus for further empirical work on
the role of noise in designing appropriate learning contexts
for meta-stable regions to surface.

7. Motivation to learn as a pre-requisite

It is also worth briefly highlighting that one of the key
pre-requisites to be considered for learning to occur is
a fundamental personal constraint: willingness of individ-
uals to learn. The need to infuse appropriate elements in

learning design to encourage motivated learners has to be
considered. How do we get learners ready to learn?
Langan-Fox, Armstrong, Balin, and Anglim (2002) clearly
articulated that setting appropriate task goals and
providing relevant incentives can strongly encourage rele-
vant processes concomitant to effective skill acquisition. It
seems that setting specific and challenging task goals are
key pedagogical constraints that can encourage learners to
acquire goal directed behaviors. Moreover, a self-directed
learning climate could also aid in increasing motivational
level for learners even at the initial stage of learning motor
skills (Martin, Rudisill, & Hastie, 2009).

This is clearly relevant to a nonlinear pedagogical
approach where appropriate task goals provide a platform
for learners to independently search and explore functional
movement behaviors. Establishing relevant task goals
pegged to appropriate learning stages of learners can help
to motivate learners to learn more effectively. For example,
if a learner is at the Control stage of learning (see Newell,
1985 for a description on learning stages) where he/she is
able to flexibly adapt a stable movement pattern to
approximately fit changing performance environments,
task goals that requires him/her to, for example, play
a tennis ground stroke to different positions in the court
(varying accuracy and weighting of strokes) will be
appropriate to increase motivation to learn.

8. Conclusions

In this paper, we have highlighted how, in complex
neurobiological systems, behavioral changes can occur as
a consequence of the interplay of constraints in the
learning environment. A key task in learning design is to
manipulate system constraints to guide exploration and
discovery of functional movement solutions. Under-
standing the significance of concepts like meta-stability,
self-organizing processes in critical states of a learner’s
system, and the influential role of ‘noise’ in the learning
environment, can inform understanding of learning design.
The strategy of manipulating key task, personal and envi-
ronmental constraints can harness self-organizing
processes in the meta-stable region of the learning system.
In the meta-stable region, learners can creatively and
flexibly use different functional behaviors, depending on
the design of the practice task constraints. In this region of
system phase space, learners can exploit inherent multi-
stability to assemble different movement solutions in
achieving task goals. Harnessing multi-stability provides
the basis of adaptive behaviors. Task constraint manipula-
tion can drive learners towards a SOC region where they
can be poised for a transition in performance. In this region
of system phase space, new actions and performance
solutions can emerge which enhance learners’ attunement
to sensitive information available in a performance context.

These ideas based on contributions from psychology,
biology and physics form a multidisciplinary basis of
a nonlinear pedagogical approach that encompasses
learning in a situated setting where no single component in
a system has over-riding control of emergent behavior.
Further research is required as concepts emanating from
Nonlinear Pedagogy are continuously refined and
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developed to create a systems-based approach to learning
design.
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