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bstract

This paper describes and evaluates the novel utility of network methods for understanding human interpersonal interactions within social
eurobiological systems such as sports teams. We show how collective system networks are supported by the sum of interpersonal interactions
hat emerge from the activity of system agents (such as players in a sports team). To test this idea we trialled the methodology in analyses of
ntra-team collective behaviours in the team sport of water polo. We observed that the number of interactions between team members resulted
n varied intra-team coordination patterns of play, differentiating between successful and unsuccessful performance outcomes. Future research

n small-world networks methodologies needs to formalize measures of node connections in analyses of collective behaviours in sports teams,
o verify whether a high frequency of interactions is needed between players in order to achieve competitive performance outcomes.

2010 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
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. Introduction

An important challenge in the social sciences is to under-
tand the structure and dynamics of the web of interpersonal
nteractions that contribute to the organisation and function
f complex social systems (exemplified by team sports and
ther collective networks). The behaviour of most complex
ystems such as cells, social institutions, flocks of pigeons
r the internet, emerges from the orchestrated activity of
any system components that interact through pairwise local

nteractions.1 A common feature of such complex, social neu-
obiological networks is that any two nodes or system agents

an become interconnected for action through a path of a few
inks only.1 This feature of complex systems has been termed
he small-world effect, which was originally observed in stud-
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es of collective systems. An interesting question is whether
he small-world effect can be observed in the interactions
f small units formed by system agents in performance sub-
hases of team games (i.e. interactions of attacker or defender
ubunits with more than two players such as 2 vs. 1 or 3 vs.
situations).
The complexity of numerous social (e.g. team sports,

raffic jams), biological (e.g. cells, fish schools, flocks
f pigeons), or communication systems (e.g. World Wide
eb) is rooted in the web of interactions of system

gents/components. For example, in team sports, function
erformance is assured by a complex network of interper-
onal relationships among the players (i.e. a social network).
he network nodes are system agents (i.e. the players), and

he interconnecting lines among players represent the ways

hat those players interact, through verbal or non-verbal com-

unications skills.2

Studies in other scientific sub-disciplines [e.g. 3] have pro-
ided a strong conceptual basis to clarify how agents might
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nteract in social neurobiological systems. For example, a
ey observation in the biochemical activity of metabolic and
enetic networks is the existence of hot links, or preferential
omponent attachments, characterized by a high frequency
f node interactions observed within a network of less active
nteractions. The origin of this property is nested in network
opology. It seems that metabolic fluxes in biological sys-
ems and the weights of links in non-biological systems are
etermined by the scale-free nature of the network topol-
gy affording the emergence of hot links.3 Consequently, the
xistence of high frequency nodes of interactions in social
eurobiological networks has been proposed.1 Such theo-
etical advances have implications for sport performance
nalysis and it is worth examining whether small-world net-
ork topologies might be observed in the study of player

nteractions in team sports.
How to perform collectively in competition is an issue

hat is highly topical in sport science and performance anal-
sis; thus it is important to attempt to identify whether
etwork topologies can characterize successful or unsuc-
essful performance. In team sports it is fundamental that
layers coordinate their actions to achieve dynamic pat-
erns of collective behaviours that allow them to satisfy
ame task constraints. In sport science, interpersonal coor-
ination tendencies (inter-team and intra-team) have been
hown to emerge from the couplings of players as social sys-
em agents.4,5 These interactive tendencies are influenced by
ultiple causes that produce multiple effects and are, thus,

efined as complex.6 For example, if observed, this type
f conceptualisation could provide a viable basis for future
otational analysis research.

The limited number of agents in team sports bound oppor-
unities for interactions among players. Owing to this feature,

team game might be conceptualised as a small-world,
ocial neurobiological system, in which system behaviour
ight evolve from the interpersonal interactions among sys-

em agents. In the present study of team sport collectives we
ypothesised that the creation of nodes of interactions among
layers might be an emergent property and may, thus, be time-
nd space-specific. These ideas illustrate how a set of play-
rs can be linked to form a sub-unit in a team to perform
ollective actions that enhance the probability of successful
erformance outcomes. Using networks methodology in an
ntra-team analysis, it may be possible to identify the players
ho most frequently interact with neighbouring team-mates

nd contribute to successful and unsuccessful collective
ctions. There are two main characteristics that make network
pproaches potentially more useful than traditional perfor-
ance analysis methods (i.e. notational analysis). The first is

he availability of network theory for developing understand-
ng of how social networks are constructed. This knowledge
onceptualises how agents in a complex system might interact

o form a network. The second feature concerns the possibil-
ty of plotting a pattern of play with an observable network
tructure and topology. These network features allow us to
dentify the players engaged in more and less frequent interac-
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ions within a team, a useful method for comparing outcomes
f successful and less successful patterns of play during per-
ormance.

In this paper our aim was to observe whether small-world
etworks could capture the rich interactions among players
n a sports team. To achieve this aim, in the following sec-
ions, we introduce network methodology and analyse the
evels of interaction among players that emerged during a
ompetitive water polo match, as a task vehicle. We also
valuate the capacity of network methodology to characterize
uccessful and unsuccessful patterns of play in team games.
n the next section we describe the development of small
orld networks methodologies to analyse patterns of play in

eam games. The couplings that characterize how performers
re linked incur structural changes over time, and are thus
ynamic. In developing data collection methods to study col-
ective system behaviours in sport, a key issue concerns how
nformation is captured from competitive performance envi-
onments. This challenging aim requires the establishment
f valid and reliable measures to describe and explain player
nteractions during team game performance.1

Previous research on interpersonal coordination in neuro-
iology has typically focused on the emergence of inter-limb
oordination patterns between individual participants.7,8

hese studies revealed that the emergence of perception-
ction couplings underpinned coordinated activity between
ndividuals. More recent work has attempted to study
ntentional and unintentional coordinated activity among
ndividuals engaged in tasks with limited system degrees of
reedom, such as rocking in a chair.9 Some previous work
as attempted to study the interpersonal interactions between
gents in social neurobiological systems such as athletes in
ub-phases of team games. Previous work on team games
e.g. rugby union, basketball, futsal) has conceptualised play-
rs’ actions in competitive team sport performance as specific
perception-action couplings’ that emerge in specific game
ub-phases, such as 1 vs. 1 attacker–defender dyads.4,5,10

Indeed, data from our programme of work4,5 has sug-
ested that the myriad of interactions that emerge among
eam players during competitive performance might lead to
he emergence of distinct patterns of play. Some of these
atterns will lead to successful performance outcomes and
thers will not. Nevertheless, an important goal for future
esearch in sport science is to understand how the structure
f the player interactions within teams might differ during
erformance. In this investigation we used networks method-
logy to analyze the structure of successful and unsuccessful
atterns of play in sub-phases of water polo, evaluating the
ntra-team interactions that occurred in competitive matches.

ith the present state of development in networks method-
logy in mind, two main questions were addressed: (i) How
an the number of intra-team interactions that emerge among

eam-mates during performance be displayed?; and (ii) What
re the most successful types of intra-team interactions: those
ith a larger number of interactions or those with a smaller
umber of interactions between players?.11
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Fig. 1. A methodology to collect data using the complex networks approach. Stage 1 describes how images of a water polo match were captured for data
a ers 1–6
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nalysis. Stage 2 displays an example of an adjacency matrix with the numb
sed when no linkages exist among players and the number 1 represents an e
tage 3 provides an exemplar network of a unit of attack with the black arro

. Methods

To characterize a team sport as a network, an impor-
ant step is to define the criteria by which the players are
inked. Only after that step can progress be made to build
n adjacency matrix for each unit of attack to identify
he proximity of interacting players. An adjacency matrix
s a means of representing which vertices (e.g. players)
n a network are adjacent to other vertices (e.g. play-
rs). The adjacency matrix is used to build a finite n × n
etwork where the entries represent the linkages between
layers (e.g. when player A passes the ball to player B).

‘unit of attack’ can be defined as the moment a team
ained ball possession until the moment that ball possession
as recovered by the opposition. In water polo, to build the

djacency matrix for each unit of attack, two linkage lev-
ls were established: (i) identification when a player passed
he ball to a team-mate; or (ii) identification when players
hanged position in the performance area due to a team-
ate’s displacement. In water polo the players’ positions in

he performance area are defined by numbers from 1 to 6,
llowing positional interchanges to be objectively observed in
straightforward manner (see Fig. 1). The criteria for choos-

ng these two levels of linkage included: (i) an expression of
level of interaction between two system agents (e.g. a pass
lways involves a passer and a receiver; changing position in
he performance area signifies that player A takes the place
f player B and vice versa); and (ii) being easily observable

or the purposes of objective analysis.

In Fig. 1 the method to convert patterns of collective team
ehaviours into networks is displayed. For example, the first
tage was to record the images of the water polo game using a

a
o

m

representing the players involved in a unit of attack. The number 0 (zero) is
king players (i.e. a pass between players; or players exchanging positions).
esenting the level of linkages among players.

iniDv camcorder at 25 Hz. The second stage was to analyze
he images to collect data to build the adjacency matrix. In this
tudy, the adjacency matrix displayed the numeric code “1”
very time the ball was passed from one player to another, and
zero” was used to identify the players who were not directly
nvolved in a specific sub-phase of attack (i.e. players who
ere not directly involved in the move). The third stage was

o build the network, based on this adjacency matrix, so that
e could plot the structure of the players’ interactions in

his attacking sub-phase. Since we set two levels of linkage
n additional matrix was constructed to identify when the
layers changed position. Again, the numeric code “1” was
sed to identify a position change, and “zero” signified that a
layer remained in the same location. Those procedures were
arried out on recordings of 11 units of attack for each team
uring a water polo match as a task vehicle to test the network
ethodology.

. Results

In the remaining sections of this paper we analyse and
iscuss exemplar data on player interactions during an attack-
ng sub-phase of water polo, to provide some insight on
ntra-team pattern-forming dynamics in sport. The findings
ighlighted two parameters that seemed to lead to success-
ul patterns of play: (i) the number of interactions between
eam members; and (ii) the probability of each player within

team interacting with each team-mate in subsequent phases
f attack.

The results suggested that networks provide a useful
ethod to qualitatively describe the interactions that occur
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Fig. 2. (a and b) The grey circles represent the players involved in the units of attack. The direction of the black arrows indicates pass direction. The origin
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f the arrow represents the player who passes the ball and the arrowhead re
he quantity of passes from one player to another during performance (i.e. th
rrows represent fewer passes taking place among players).

mong players in the water polo game. In Fig. 2a and b
he direction and level of interactions within each team are
isplayed. The black arrows identify the pass direction (i.e.
etween the player who passed the ball and the player who
eceived the ball). The width of arrows in the figures char-
cterizes the number of interactions (i.e. passes or positional
hanges) among players, with larger arrows signifying more
nter-player interactions, and smaller arrows indicating fewer
nteractions among team-mates.

Beyond qualitative analyses, networks also afford oppor-
unities for quantitative analyses to interpret differences

etween successful and unsuccessful patterns of play. Fig. 3a
nd b illustrates the probability that players A and B inter-
ct together (i.e. passing the ball to each other or exchanging
ositions). The more interactions that occurred among play-

“
a
t
(

ts the player who received the ball. The width of the black arrows denotes
rrows illustrate more passes occurring between specific players and thinner

rs, the lighter is the colour displayed in the grid, as displayed
n the reference scale on the right hand side of each grid. In
ig. 3a and b it can be observed that the light team (Fig. 3b)
isplayed more interactions among its players than the dark
eam (Fig. 3a). In both figures, players coded number “seven”
re the goalkeepers. When analyzing the data from the dark
eam (Fig. 3a), it can be observed that the player coded num-
er “1” had a low probability (between 0.06 and 0.13) of
nteracting with other players in the team. Additionally, it
an be observed that player number “6” had a high proba-
ility of interacting only with the players numbered “2” and

3” (0.48). With other team-mates, the probability of inter-
ction was very low (between 0.06 and 0.13). In contrast, in
he light team (Fig. 3b), all the players displayed a reasonable
above 0.22; a value classified as “reasonable” because it is
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Fig. 3. (a and b) The scale on the right-hand side of each figu

ituated near the middle of the scale) to high level of probabil-
ty of interacting with each other. The only exception to this
bservation was the probability of interaction among player
umber “1” and players number “5” and “6” (values below
.06).

From the data visualisations, it appears that the pattern of
lay displayed by the light team was characterized by a higher
umber of interactions (Fig. 2), as well as a higher probabil-

ty of interactions among players (Fig. 3) in subsequent units
f attack. It was observed that this pattern of interactions
mong team-mates tended to lead to more successful col-
ective performance outcomes. It was also observed that the

d
v
b
p

lays the probability that player A will interact with player B.

layers of the dark team interacted less frequently than the
layers of the light team. This observation can be sustained
y the higher number of thinner arrows (k = 6) displayed
or the dark team (Fig. 2a), signifying single interactions
mong players. In contrast, the light team (Fig. 2b) exhibited
higher number of interactions among players as displayed
y the higher number (k = 8) of broader arrows. In Fig. 3a
dark team), a low probability of player interaction was

isplayed, suggesting that this team was more reliant on indi-
idual efforts and initiatives of players, rather than collective
ehaviours. In contrast, the light team displayed a greater
robability for players to interact in collective behaviours
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hich is an important feature for successful outcomes in team
ames.

. Discussion

In this paper we outlined how the structure and specific
opology of a network might provide useful insights about
ollective behaviours in team sports, which can be used in
actical and strategic decision making for competition. From
he results it was possible to visually identify emergent pat-
erns of play that were different (Fig. 2a and b). Thus, it can be
uggested that team games, such as water polo, are systems
ith the capacity for small-world networks to form among

ystem agents. This methodological approach provides the
pportunity to assess the relative success of a specific team
ormation or tactical pattern over others, a notion that requires
urther investigation.

Collective behaviours are paramount for success in attack-
ng sub-phases of team games and are strongly dependent
n how players are coupled in emerging intra-team coor-
ination patterns. The quantification and visualisation of
hose intra-team coordination patterns afford coaches use-
ul knowledge to assess which players are most and least
nvolved (i.e. displayed in the highest and lowest number
f interactions with the team-mates) in each attacking sub-
hase. Measurement of temporal or spatial distribution of
he high frequency nodes of interaction in team sports is
n important issue for further research in this approach to
erformance analysis. The data illustrated how team games
an be characterized as small-world networks with peaks
f high activity interactions among agents that occur with
ifferent spatio-temporal relations. We hypothesised that, at
ach moment of the game, not all the players would demon-
trate an equal level of interaction with team-mates. In other
ords, some players might have greater involvement in high

requency activity regions (i.e. regions where the ball is
ocated), whereas other players may be located far from
hose areas. This performance feature led to the emergence
f specific topologies that were captured by the small-world
etworks.

In every team game there are players with whom team-
ates might prefer to be linked (e.g. illustrated through

assing the ball). These players are known in complex net-
orks language as preferential attachments. Identifying the
referential attachments within a small-world network can
e a very useful way to accurately identify the key “decision
akers” during important phases of competitive perfor-
ance. Identifying the ecological constraints that potentiate

he decision-making function of players will also advance
raining methods.10,12

A further interesting question for further research is: if

e substitute or “erase” a particular preferential attachment

ink, how does the rest of the team re-organise? Are team
port players dependent on the actions of preferential attach-
ents, functioning in a hierarchical mode of control, or do

n
A
h
s
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hey have the ability to collectively display self-organisation
n a distributed mode of control? Which one of these modes
f control better fits the specificity of demands in differ-
nt sports? The latter is an open question that has emerged
rom the initial work of Mendes et al.11 highlighting the
eed for further research using small-world networks as a
ethod by which to analyse collective performance in team

ports.

. Conclusions

The present data allowed us to confirm that small-world
etworks may be a useful method for capturing pattern-
orming dynamics in team sports. The results of work
ndicated that, in theoretical modelling of team game pat-
ern forming dynamics, the most successful collective system
ehaviours required a high probability of each player inter-
cting with other players in a team (see Fig. 3b). Further
esearch on the nature of preferential attachments may add
ew insights concerning the most useful mode of control to
e adopted in different team game performance contexts.
ore specifically, we were able to conclude that networks

nalysis is a viable method to represent the several levels
f intra-team interactions that emerged during a water polo
atch.

ractical implications

Based on empirical observations of the level of inter-
actions among specific players, coaches should adopt
training methods to strength specific ‘couplings’ that
emerge among key players in different sub-phases of team
games.
Training methods should increase the number of interac-
tions afforded during each game subphase. Each player in
a competitive performance environment must be able to
interact with other key players to form successful subunits
in teams.
To potentiate players’ couplings, training methods should
be sustained on task constraint manipulations (involving
changes to the number of opponent players involved in
practice; field dimensions; specific task instructions) to
design learning environments that are representative of
competitive performance contexts.
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