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1Faculty of Physical Education and Sports, Lusófona University, Lisbon, Portugal. 2IDMEC/IST–Institute of Mechanical
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ABSTRACT. When considering time series data of variables
describing agent interactions in social neurobiological systems,
measures of regularity can provide a global understanding of such
system behaviors. Approximate entropy (ApEn) was introduced as
a nonlinear measure to assess the complexity of a system behavior
by quantifying the regularity of the generated time series. However,
ApEn is not reliable when assessing and comparing the regularity
of data series with short or inconsistent lengths, which often
occur in studies of social neurobiological systems, particularly in
dyadic human movement systems. Here, the authors present two
normalized, nonmodified measures of regularity derived from the
original ApEn, which are less dependent on time series length. The
validity of the suggested measures was tested in well-established
series (random and sine) prior to their empirical application,
describing the dyadic behavior of athletes in team games. The
authors consider one of the ApEn normalized measures to generate
the 95th percentile envelopes that can be used to test whether a
particular social neurobiological system is highly complex (i.e.,
generates highly unpredictable time series). Results demonstrated
that suggested measures may be considered as valid instruments
for measuring and comparing complexity in systems that produce
time series with inconsistent lengths.

Keywords: analysis of regularity, entropy measures, social neuro-
biological systems, time series

Approximate entropy (ApEn) was first introduced in 1991
by Pincus as a nonlinear measure to quantify regular-

ity in the behaviors of complex systems. The regularity of
a signal relates to the complexity of the system generating
it (Pincus, 1995), thus, the greater the value of ApEn, the
lower the regularity of the time series, and the greater the
complexity of the system under study. ApEn values vary be-
tween 0 and 2, with high values identifying data series with
less regular and predictable patterns, and low values associ-
ated with data series containing many repetitive patterns (i.e.,
data which are more regular and more predictable). Since its
introduction, ApEn has been established as a measure of
regularity in a time series, with numerous applications in
analysis of physiological time series such as heart rate vari-
ability, electrocardiogram measures, respiration, anesthesia,
gene sequences, pulse waveform, and electroencephalogra-
phy (Xu, Wang, & Wang, 2005).

A major interest when analyzing the complexity of physi-
ological systems is to compare the regularity of a given time
series between different groups, for example, compare the
ApEn of pulse data records in healthy persons, inpatients
with cardiovascular disease, and inpatients without any car-

diovascular disorder (Wang et al., 2003). However, given that
ApEn values are highly dependent on times series length, and
are particularly unstable for short time series (e.g., Pincus &
Golberger, 1994; Richman, 2007; Xu et al., 2005), the ap-
plication of such a regularity measure is only recommended
when considering signals of the same length, preferably with
at least 50 data points (Stergiou, Buzzi, Kurz, & Heidel,
2004). To ensure such conditions, when considering phys-
iological time series (e.g., heart rate variability, pulse), in-
dividuals are monitored during a fixed amount of time and
data are collected at the same rate (Pincus, Padmanabhan,
Lemon, Randolph, & Midgley, 1998; Pincus & Viscarello,
1992; Ryan, Goldberger, Pincus, Mietus, & Lipsitz, 1994;
Wang et al., 2003).

When the previous conditions cannot be guaranteed, mod-
ified measures of the original ApEn can be applied (e.g., sam-
ple entropy [Richman & Moorman, 2000], Gaussian Kernel
approximate entropy [Xu et al., 2005], modified sample en-
tropy [Xie, He, & Lui, 2008], Fuzzy approximate entropy
[Chen, Zhuang, Yu, & Wang, 2008]). These measures have
been shown to be less dependent on record length and more
stable for short series.

In the study of social neurobiological systems, such as
flocking birds, schooling fish, herding animals, human soci-
eties, and sports teams (Couzin, 2007; Sumpter, 2006), unlike
physiological systems, it may not be possible to ensure that
all system output samples are of the same length. This is par-
ticularly difficult in studying social neurobiological systems
because of the continuous interactions of system agents in
tasks where a specific performance goal has to be achieved.
Because the length of the captured time series is dependent
on the time required by the agents to conclude a particular
performance task (as exemplified by an attacking or defend-
ing performance subphase in a team game), the use of ApEn
for assessing regularity is not advisable. Modified measures
of regularity, such as those mentioned previously, could be
applied here; however, we suggest in this article two nor-
malized measures of the original ApEn. By applying these
new measures it is possible to compute a straightforward
normalization of any ApEn value in which the original ApEn
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was used, which allows a reliable comparison of time series
regularity in different complex systems.

Method

Given a data series with N points, say {x1, x2, . . ., xN},
ApEn (m, r, N) can be used to measure the logarithmic likeli-
hood that runs of patterns with m points that are close, remain
close within a tolerance factor r in ensuing incremental com-
parisons (Pincus, 1991; i.e., to measure the predictability of
the data series). To compute ApEn (m, r, N), the parameters
m, the length of compared runs, and r, the tolerance factor,
need to be fixed for all calculations to ensure reliable analysis
(Pincus, & Goldberger, 1994). In our analysis, as suggested
in studies of other neurobiological systems, we considered
m = 2 and r = 0.2. All calculations were performed in Mat-
lab (version 7.6.0, The MathWorks, Natick, MA, USA) using
routines written for this purpose (Kaplan & Staffin, 2009).

The techniques for normalization considered here are
based on the ratio between an observed ApEn value and
a threshold reference ApEn value, for a specific data series
length. This normalization allows the regularity of data series
of different lengths to be compared.

Our first normalized measure, designated ApEnRatioRandom,
is given by

ApEnRatioRandom = ApEn(2, 0.2, N )X∑100
i=1 ApEn(2, 0.2, N )Ui

/
100

(1)

Here, the regularity of the data series X = {x1, x2, . . ., xN}
is quantified by means of the ratio between its original ApEn
value, ApEn (2, 0.2, N)X, and the mean ApEn calculated in
100 random series Ui with the same length N. Note that for
each generated random series, Ui, the corresponding ApEn,
ApEn(2, 0.2, N )Ui

, represents a maximum value of approxi-
mate entropy for that particular length. Hence, ApEn (2, 0.2,
N)X is normalized with respect to a maximum value of ApEn
of a series of length N.

Our second normalized measure, designated
ApEnRatioShuffle, is given by

ApEnRatioShuffle = ApEn(2, 0.2, N )X∑100
i=1 ApEn(2, 0.2, N)Si

/
100

(2)

Here, the regularity of the data series X = {x1, x2, . . ., xN}
is given by the ratio between its original ApEn value, ApEn
(2, 0.2, N)X, and the mean ApEn calculated in 100 shuf-
fled replicas Si of the original data. Note that for each shuf-
fled replica of X, Si, the corresponding approximate entropy,
ApEn(2, 0.2, N )Si

, represents a maximum value of approxi-
mate entropy for that particular set of points. Hence, ApEn
(2, 0.2, N)X is normalized with respect to a maximum value
of ApEn of that particular set of points. In both methods
described here, low values of the corresponding measures
will indicate that the time series under study is generated by

a social neurobiological system that is less predictable than
random time series of the same length.

For testing the methods presented in this article, we con-
sidered data from a dyadic human movement system; more
precisely, a rugby union attacker–defender system in which
the attacker aims to score and the defender tries to prevent
it. Results should be in accordance with findings in the liter-
ature that suggest that physical contact between an attacker
and defender increases the complexity of this system (Passos
et al., 2009), making the dyadic subsystem behaviors that
emerge in try situations (success for the attacker) more pre-
dictable than in tackle situations (success for the defender)
in which players do experience physical contact.

In this regard, the interactive behaviors that emerges in
each trial of this social neurobiological system is accurately
measured, across its duration, by a one-dimensional vari-
able X defined in previous work by Passos et al. (2009) and
designated as collective variable. This variable represents
the vector connecting the agents in the dyad, and is formally
given by the value of the angle between the defender–attacker
vector and a horizontal line parallel to the try line with the
origin in the defender. The values of X range from –90◦ to
90◦, which occur when an attacker and defender are in the
same vertical position, being 90◦ when the defender is closer
to the try line and –90◦ when the attacker is closer to the try
line. X is zero when attacker and defender are in the same
horizontal position.

To assess the regularity of this collective variable, we con-
sidered 47 experimental dyadic trials in which participants
were male rugby players aged 11–12 years, with an aver-
age of 4.0 ± 0.5 years of rugby practice. Treatment of par-
ticipants was in accordance with the ethical standards of
American Psychological Association. Trials were performed
on a field of 5 m width × 10 m depth and two fixed dig-
ital video cameras at 25 Hz were used to capture players’
movements. The angle given by the variable X was calcu-
lated from players’ trajectory motion data extracted from the
videos using the methodology described in detail in Passos
et al. (2009). Figure 1 displays two examples of these data,
one from a successful situation (try scored) and the other
from an unsuccessful situation (try not scored).

The 47 data series analyzed, try scored (n = 20) and try
not scored (n = 27), had a record length ranging from 69 to
230 data points (112 ± 36.3). Both normalized measures of
ApEn were calculated and comparative statistical analyses
were performed using nonparametric tests (Mann-Whitney
test) due to lack of normality in the data and the small sample
size. The level of statistical significance was fixed at 5%.

Results

The normalized measures of ApEn suggested in this ar-
ticle, ApEnRatioRandom and ApEnRatioShuffle, were tested with
regard to the series length effect. An application of these
two well-known data series (sine and random) with different
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FIGURE 1. Example data for the collective variable X mea-
sured in a successful trial (try scored) and in a unsuccessful
trial (try not scored).

lengths has shown the advantages of these (Figure 2) in com-
parison with the original ApEn measure (Figure 3).

Both normalized measures appeared to be less dependent
on record length for both data series, reaching stability for
small lengths. This observation reinforces the need of con-
sidering more reliable measures for analyzing complexity in

FIGURE 2. Normalized entropy measures calculated for
sine and random series data of different lengths (N).

FIGURE 3. Original ApEn calculated for sine and random
series data of different lengths (N).

systems that produce time series with inconsistent lengths,
a typical occurrence when studying social neurobiological
systems. Nevertheless, a minimum of 50 data points is also
advised to allow reliable approximate entropy comparisons
(Stergiou et al., 2004). In a specific application of these mea-
sures to a dyadic subsystem (1 vs. 1), interaction in the team
sport of rugby union, in which physical contact is associated
with less regular interaction behaviors, both ApEn normal-
ized measures indicated, accordingly, greater unpredictabil-
ity in situations with effective contact between the players
(i.e., an attacker was tackled by an opposing defender (try
not scored; see Figure 4).

Using the nonparametric Mann-Whitney test, significant
differences were found between the two task outcomes for
ApEnRatioRandom (p = .0196) and ApEnRatioShuffle (p = .0185),
confirming that behavioral outcomes in try situations are
more regular than tackle situations.

Given the similarity of both measures, we considered the
ApEnRatioRandom to determine the 95th percentile envelope of
this normalized measure, calculated from 100 simulations of
random data series of length from 50 to 1000 (Figure 5).

The logarithm curves fitted to the upper (U) and lower
(L) bounds of the 95th percentile of the ApenRatioRandom for
random time series with length greater than 50 are given by

ApEnRatioRandom

∣∣ 95th

U
= −0.09 ln (N ) + 1.6089 (3)

ApEnRatioRandom

∣∣ 95th

L
= 0.0845 ln (N ) + 0.4233 (4)

with a corresponding R2 for the logarithm fitting of .752 and
.742, respectively.

2012, Vol. 44, No. 3 181
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FIGURE 4. Mean approximate entropy for each of the two
task outcomes using ApenRatioRandom and ApEnRatioShuffle.

Given these, deviations from complete behavioral random-
ness (i.e., high unpredictability) observed in a specific social
neurobiological system could be tested by computing the
median ApEnRatioRandom for a sample of time series of that
system to verify whether the obtained value is within the
envelopes estimated for N equal to the median of dimension

FIGURE 5. The 95th percentile envelopes of
ApEnRatioRandom for random series of different lengths
(N) and the fitted logarithm curves for the upper and lower
bounds.

of the time series considered. For the social neurobiological
system considered in this study, the median of the time se-
ries dimension was 98 and 105 for try and no-try situations
and therefore the envelopes are [0.81, 1.2] and [0.82, 1.19],
respectively. The median ApEnRatioRandom values in try and
no-try situations were 0.23 and 0.33, with both below the
respective lower reference value. This finding suggests that,
regardless of the outcome, the dyadic system behavior under
study is more predictable than would be expected in the case
of complete randomness. Nevertheless, results suggested that
the level of system output regularity was significantly differ-
ent between the try and no-try performance situations, being
more predictable for try situations.

Discussion

In this article we presented two normalized measures based
on the original ApEn for quantifying and comparing regu-
larity in the interactions of agents in social neurobiological
systems, particularly in those that produce time series with in-
consistent lengths. The limitations associated with the appli-
cation of the original ApEn to time series of varying lengths,
have been previously addressed by other authors (Chen
et al., 2008; Richman & Moorman, 2000; Xie et al., 2008; Xu
et al., 2003) introducing modified measures of the original
ApEn. Alternatively, the measures here presented consider
the same limitations but are based on the use of the original
ApEn.

We considered two well-known data series (sine and ran-
dom) with different lengths, for testing the advantages of
these normalized measures in comparison with the original
ApEn measure. For the normalized measures we calculate
the 95th percentile envelopes, which can be interpreted as
reference values for testing deviations from complete ran-
domness (i.e., low predictability) in social neurobiological
time series of any length greater than 50. An application of
these measures to empirical data from a dyadic system behav-
ior in rugby union suggested that the emergent behavior of
this particular social neurobiological system is more regular
than expected in the case of complete randomness, given that
the agents in this system have a specific performance goal.
Additionally, the analysis of regularity indicates that the com-
plexity of this system was significantly lower when physical
contact between the two players occurred, as suggested by
Passos et al. (2009). Overall, the application of the normal-
ized ApEn measures to theoretical (sine and random) and em-
pirical data suggest that they can be regarded as reliable mea-
sures for quantifying and comparing regularity of time series
with different lengths. These findings could be used to rein-
terpret previous work on behaviors of social neurobiological
systems (e.g., Araújo, Davids, Bennett, Button, & Chapman,
2004) with criteria to compare the regularity of time series of
different lengths, something that was not possible previously
beyond simple visual inspection. Moreover, an exciting pos-
sibility for future researchers is to study complex daily social
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Approximate Entropy Normalized Measures

interaction behaviors to identify different patterns, without
concerns over the possible loss of explanatory power.
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Passos, P., Araújo, D., Davids, K., Gouveia, L., Serpa, S., Milho,
J., & Fonseca, S. (2009). Interpersonal pattern dynamics and
adaptive behavior in multi-agent neurobiological systems: A
conceptual model and data. Journal of Motor Behavior, 41,
445–459.

Pincus, S. M. (1991). Approximate entropy as a measure of system
complexity. Proceedings of the National Academy of Sciences,
88, 2297–2301.

Pincus, S. M. (1995). Approximate entropy (ApEn) as a complexity
measure. Chaos, 5, 110–117.

Pincus, S. M., & Goldberger, A. (1994). Physiological time-
series analysis: What does regularity quantify? American Jour-
nal of Physiology–Heart and Circulatory Physiology, 266,
H1643–H1656.

Pincus, S. M., Padmanabhan, V., Lemon. W., Randolph, J., &
Midgley, A. R. (1998). Follicle stimulating hormone is secreted
more irregularly than luteinizing hormone in both humans and
sheep. Journal of Clinical Investigation, 101, 1318–1324.

Pincus, S. M., & Viscarello, R. (1992). Approximate entropy: A
regularity measure for fetal heart rate analysis. Obstetrics & Gy-
necology, 79, 249–255.

Richman, J. S. (2007). Sample entropy statistics and testing for
order in complex physiological signals. Communications in
Statistics–Theory and Methods, 36, 1005–1019.

Richman, J. S., & Moorman, J. R. (2000). Physiological time-
series analysis using approximate entropy and sample entropy.
American Journal of Physiology–Heart and Circulatory Physi-
ology, 278, H2039–H2049.

Ryan, S. M., Goldberger, A. L., Pincus, S. M., Mietus, J., & Lipsitz,
L. A. (1994). Gender- and age-related differences in heart rate
dynamics: Are women more complex than men? Journal of the
American College of Cardiology, 24, 1700–1707.

Stergiou, N., Buzzi, U., Kurz, M., & Heidel, J. (2004). Nonlinear
tools in human movement. In N. Stergiou (Ed.), Innovative anal-
yses of human movement (pp. 63–87). Champaign, IL: Human
Kinetics.

Sumpter, D. (2006). The principles of collective animal behaviour.
Philosophical Transactions of the Royal Society of London B:
Biological Sciences, 361, 5–22.

Wang, K., Xu, L., Li, Z., Zhang, D., Li, N., & Wang, S. (2003).
Approximate entropy based pulse variability analysis. Proceed-
ings of the 16th IEEE Symposium on Computer-Based Medical
Systems, 236–241.

Xie, H. B., He, W. X., & Lui, H. (2008). Measuring time series reg-
ularity using nonlinear similarity-based sample entropy. Physics
Letters A, 372, 7140–7146.

Xu, L. S., Wang, K. Q., & Wang, L. (2005). Gaussian kernel ap-
proximate entropy algorithm for analyzing irregularity of time
series. Proceedings of the 4th International Conference of Ma-
chine Learning and Cybernetics, 9, 5605–5608.

Received December 27, 2010
Revised February 5, 2012

Accepted February 16, 2012

2012, Vol. 44, No. 3 183

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

T
L

] 
at

 0
3:

51
 0

4 
M

ar
ch

 2
01

3 


