
This article was downloaded by: [b-on: Biblioteca do conhecimento online UTL]
On: 02 May 2014, At: 08:22
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Journal of Motor Behavior
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/vjmb20

To Pass or Not to Pass: A Mathematical Model for
Competitive Interactions in Rugby Union
Ana Diniza, João Barreirosa & Pedro Passosa

a CIPER, Faculty of Human Kinetics, University of Lisbon, Portugal
Published online: 30 Apr 2014.

To cite this article: Ana Diniz, João Barreiros & Pedro Passos (2014): To Pass or Not to Pass: A Mathematical Model for
Competitive Interactions in Rugby Union, Journal of Motor Behavior, DOI: 10.1080/00222895.2014.899963

To link to this article:  http://dx.doi.org/10.1080/00222895.2014.899963

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/vjmb20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00222895.2014.899963
http://dx.doi.org/10.1080/00222895.2014.899963
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


RESEARCH ARTICLE

To Pass or Not to Pass: A Mathematical Model for Competitive
Interactions in Rugby Union
Ana Diniz, Jo~ao Barreiros, Pedro Passos
CIPER, Faculty of Human Kinetics, University of Lisbon, Portugal.

ABSTRACT. Predicting behavior has been a main challenge in
human movement science. An important step within the theory of
coordination dynamics is to find out the rules that govern human
behavior by defining order parameters and control parameters that
support mathematical models to predict the behavior of a system.
Models to describe human coordination have been focused on
interlimb coordination and on interpersonal coordination in affilia-
tive tasks but not on competitive tasks. This article aims to present
a formal model with two attractors to describe the interactive
behavior on a 2v1 system in rugby union. Interpersonal distance
and relative velocity critical values were empirically identified
and were included as task constraints that define the attractor land-
scape. It is shown that using relative velocity as a control parame-
ter the model offers reasonable prediction concerning the
decision-making process. The model has the plasticity to adapt to
other settings where interpersonal distances and relative velocities
amongst system components act as significant task constraints.

Keywords: decision making, dynamical system, interpersonal
coordination, stable state

The core of this article is to present a low-dimensional

description of fundamental processes that are implicit

to the interactions between high-dimensional biological

systems (i.e., players; J. A. S. Kelso, 1988; S. Kelso, 1995;

Newell, Liu, & Mayer-Kress, 2008; Schoner & Kelso,

1988), with a formal model with two attractors that roughly

describe the interaction between two attackers and one

defender in rugby union. The three agents are coupled

throughout by contextual information, such as continuous

changes on interpersonal distances and relative velocities,

which influence players’ decisions and actions in the neigh-

borhood. This contextual dependency implies that three

players in a 2v1 situation in rugby union behave as a non-

linear dynamical system. There are a number of difficulties

involved in testing dynamical systems properties in natural

settings, such as the manipulation of hypothetical control

parameters and the analysis of changes in the order parame-

ters. Therefore, it is the purpose of the present work to

describe a 2v1 system in rugby union as a dynamical sys-

tem with two attractors, in order to explain why a three

agent system remains as a three agent system (i.e., a 2v1 sit-

uation) or why it is attracted to a two competitive agent sys-

tem (i.e., a 1v1 situation).

Characterization of the 2v1 System

The 2v1 system is a typical situation in rugby union that

can be roughly described as a situation in which a ball car-

rier aims to commit the defender with him/her, usually

running toward the defender and then passing the ball to a

support player. The support player needs to manage the

interpersonal distance to the ball carrier, being available to

receive the ball and to run free toward the goal line. The

defender aims (a) to tackle the ball carrier, (b) to intercept

the ball, or (c) to tackle the support player following the

reception of the ball (Figure 1). Grounded on both players’

relative position, the defender can adopt various strategies

to realize these goals. For instance, the defender can run

fast toward the ball carrier aiming to tackle him or her

(expressed by a fast decrease on the ball carrier–defender

interpersonal distance) or the defender can choose to main-

tain a relative position to the ball carrier while he or she is

running forward on the pitch, aiming to drive the attacker

to the sideline and tackle him or her closer to the score line

(known as a drifted defense).

In typical 2v1 conditions, there are (at least) two possible

final states to where the system is attracted, on the basis of

the ball carrier behavior: (a) the ball is passed to the support

player; (b) the ball carrier decides to go forward for a 1v1

situation. Nevertheless, we recognize the existence of other

possible states that will be discussed as plausible model

predictions in the Discussion section. By states, we mean

attractive states of the collective variable (i.e., order param-

eter) dynamics, signifying that the collective variable con-

verges in time to a limited set of solutions (e.g., the ball

carrier passes the ball to the support player or the ball car-

rier decides to go forward; J. A. S. Kelso & Engstrom,

2006; S. Kelso, 2009). In both outcomes, the defender nei-

ther intercepts the ball nor tackles the ball carrier; therefore,

the attackers always succeed.

Beyond speculations, the reasons that lead the ball carrier

to pass the ball to the support player or to go forward

remain unknown. However, recent empirical research

grounded on robust observation techniques claims that

players’ interpersonal distances and relative velocities may

help to understand why the system is attracted to one of the

two states (Passos, Cordovil, Fernandes, & Barreiros,

2012). In fact, the analysis of a random sample of trials

selected from a total of 65, showed that around the moment

of the ball carrier decision two distinct situations happened:

(a) when the ball carrier–defender interpersonal distance

was small and the ball carrier–defender relative velocity

was negative (i.e., the defender velocity was increasing and
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the ball carrier velocity was decreasing or stable), the ball

carrier decided to pass the ball to the support player; (b)

when the ball carrier–defender interpersonal distance was

large and the ball carrier–defender relative velocity was

positive (i.e., the ball carrier velocity was increasing

whereas the defender velocity was decreasing or stable),

the ball carrier decided to go forward. More precisely, for

negative relative velocities the percentage of times a pass

occurred was 80.0%, whereas for positive relative veloci-

ties the percentage of times it occurred was 14.3%

(p¼ 0.01); on the other hand, for positive relative velocities

the percentage of times a go forward took place was 85.7%,

while for negative relative velocities the percentage of

times it took place was 20.0% (p ¼ 0.01). Regarding the tri-

als where the relative velocities were around zero, namely

in the neighborhood of zero with length of one standard

deviation, the percentage of times a pass occurred was

60.0% and the percentage of times a go forward took place

was 40.0%. Figure 2a displays an example of a trial where

the pass occurred and Figure 2b exhibits an example of a

trial where the ball carrier went forward. For both figures

the data show relative velocity fluctuations and interper-

sonal distances until the moment of the decision (black cir-

cle), namely a pass below 1 m of interpersonal distance

with negative relative velocity (Figure 2a) and a go forward

close to 3 m of interpersonal distance with positive relative

velocity (Figure 2b). Therefore, to describe the system

behavior at the moment of the ball carrier decision, we will

use one order parameter—the ball carrier–defender inter-

personal distance—which may assume two possible condi-

tions: (a) the order parameter assumes lower values, which

is consistent with the ball carrier decision to perform a pass

to the support player; (b) the order parameter assumes

higher values, which is consistent with the ball carrier deci-

sion to go forward. Moreover, we will additionally include

one control parameter: the ball carrier–defender relative

velocity, which may take negative or positive values. The

pertinence of a formal model to describe the players’

behavior in the above mentioned conditions depends on the

plausibility of this control parameter and its contribution to

drive the system to one of the two alternative outcomes

(Figure 3).

Task Constraints and Control Parameters

Previous studies in rugby union revealed interesting

results that are useful to highlight the task constraints and

to indicate the best candidate to act as a control parameter

in the model. In team sports, the ball carrier actions are

closely linked to the interpersonal distance to the defender.

Interpersonal distances were previously characterized as
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FIGURE 1. Schematic representation of a 2v1 system in
rugby union.
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FIGURE 2. Graphical representation of the ball carrier–
defender relative velocity versus the ball carrier–defender
interpersonal distance: a. outcome passes the ball; b. outcome
goes forward.
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critical regions, where players’ behaviors are constrained

by a contextual dependency (Passos et al., 2009). In these

critical regions, the ball carrier chooses between perform-

ing a pass to the support player and to go forward. Outside

the critical regions, the system tends to keep a certain struc-

tural organization, maintaining the attacker–defender bal-

ance, which means that the defender keeps a position

between the attackers and the goal line. To cross the

defender’s line the ball carrier must enter the critical region

in which a decision has to be made concerning the decision

to pass the ball or to remain with the ball and go forward in

a 1v1 scenario. Outside the critical regions, the decision-

making process may well be driven by general behavioral

prescription, such as strategic organization and team struc-

ture, but inside the critical regions the effect of some con-

trol parameter has to be considered. For instance, the

relative velocity—the difference between the attacker

velocity and the defender velocity—is a promising parame-

ter to explain why the attacker–defender dyad evolves to a

certain outcome (i.e., a defender tackle or an attacker try).

The literature suggests that the decreasing of opponent

players’ interpersonal distance drives the attacker–defender

dyadic system into a critical region. Within the critical

region, the relative velocity plays a major role as a control

parameter. Research about attacker–defender dyads in

rugby union reveals that, at interpersonal distances smaller

than 4 m, when players are running toward each other, the

player that is increasing velocity will gain advantage over

the other (Passos et al., 2008). It is also known that in order

to diminish any odds of the defender to tackle the support

player, the pass should be performed below 1 m of interper-

sonal distance (Passos et al., 2012). The 1 m boundary was

also observed in collision avoidance between walkers

(Olivier, Marin, Cr�etual, & Pettr�e, 2012), indicating that

collision avoidance in humans may happen at distances

around this critical value. We are aware, however, that this

critical value may well be dependent on skill level and

other factors.

For the proposed model, and within a critical region of

less than 4 m of interpersonal distance, the ball carrier–

defender relative velocity will be considered as a suitable

control parameter. To specify the relative velocity at the

moment of the decision, we will also consider 5 ms�1 as a

reasonable maximum value of the relative velocity (Hen-

dricks, Karpul, Nicolls, & Lambert, 2012; Passos et al.,

2008).

Modeling the General Features of Players’ Interactions

The aim of the proposed formal model is to capture

whether the interactions between two attackers and one

defender evolves into a 2v1 situation or falls into a dyadic

1v1 situation. In this case, there is an order parameter and

two reproducibly observed states (i.e., to pass the ball or to

go forward) that can be characterized as attractors, or stable

states, to where the system moves. Prior research on the

dynamics of bimanual coordination showed that when sub-

jects start to cycle their index fingers in an antiphase mode,

an increase in the cycling frequency generates a switch to

an inphase pattern (J. A. S. Kelso, 1984). The experimental

observations revealed important properties of self-organiza-

tion, such as phase transitions, multistability, and hystere-

sis. These empirical results led to a hallmark theoretical

(HKB) model with two attractors and transitions from one

attractor to the other at specific values of movement fre-

quency, that in turn was derived from nonlinear interactions

among the moving components (Haken, Kelso, & Bunz,

1985). Combining concepts of synergetics (e.g., order

parameters–collective variables, control parameters, slav-

ing principle) and tools of nonlinear dynamical systems

(e.g., instability, multistability, timescales), the emergent

behavior of the system was formally modeled using a

potential function and a differential equation (motion equa-

tion), which offers a mathematical description of the sys-

tem’s behavior as time passes and parameters change. The

potential function describes an attractor landscape, in which

the valleys function as attractors and reflect relatively stable

behavioral states. If the order parameter is denoted by x and

the potential function is denoted by V, then the evolution of

x over time can be expressed by the differential equation

dx/dt ¼ – dV/dx. A value of x for which the derivative dx/

dt is equal to zero corresponds to a steady state, with a min-

imum of V signaling an attractor and a maximum of V a

repeller. In the HKB model, the order parameter was the

relative phase ’ of the oscillators and the potential function

V, which was presumed to be periodic and symmetric, was

defined as V(’) ¼ – a cos(’) – b cos(2’), where a and b

were two control parameters. Thus, the motion equation

was written as d(’)/dt ¼ – a sin(’) – 2b sin(2’) (by rescal-

ing, the parameters a and b were then expressed as a single

parameter k ¼ b/a).

Beyond symmetric interlimb coordination, the HKB

model was later extended to numerous coordination tasks.

J. A. S. Kelso, DelColle, and Sch€oner (1990) established a

broken symmetry version of the model for sensorimotor

coordination (Kelso et al., 1990). This generalized model

handled the asymmetry between the oscillators by including

a detuning term defined as the arithmetical difference

between the uncoupled frequencies. In another study of

Interpersonal
distance

Relative
velocity

Player with
advantage

Ball carrier
decision

Large Positive Ball carrier To go forward

Small Negative Defender To pass the ball

FIGURE 3. Schematic representation of the ball carrier–
defender interpersonal distance and the ball carrier–
defender relative velocity in the outcomes passes the ball
and goes forward.
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interpersonal coordination pairs of participants were

instructed to perform a rhythmic task of visual coordination

of their outer legs (Schmidt, Carello, & Turvey, 1990). The

results displayed two modes of coordination, antiphase and

inphase, where the switching between these two modes of

coordination was due to changes on the control parameter

values, namely the frequency of oscillation of the legs.

However, despite some general and useful features (e.g.,

describing a system behavior with two attractors), the HKB

model is not suitable for 2v1 systems in rugby union,

because it is a cyclic model based on trigonometric func-

tions. Therefore, our model is close to previous work on the

dynamics of speech perception that showed that listeners

perceive the word say at short silent gaps (between the “s”

and the “ay”) and perceive the word stay at long silent gaps

reflecting properties of self-organization (Tuller, Case,

Ding, & Kelso, 1994). The empirical results motivated a

formal model with two attractors and transitions from one

attractor to the other at particular values of gap duration

(Tuller, Ding, & Kelso, 1997). In the speech perception

model, the order parameter x was a variable characterizing

the perceptual form and the potential function V was writ-

ten as V(x) ¼ k x – x2/2 þ x4/4, where k was a control

parameter. So, the motion equation was written as dx/dt ¼
– k þ x – x3.

It is worth mentioning that the order and the control

parameters for the HKB and the Tuller models are clearly

identified and can thus capture the systems dynamics in

terms of mathematically defined attractors (Kijima et al.,

2012). However, we experience an increased difficulty

when attempting to apply these models to team sports inter-

active behaviors. To overcome this difficulty it is necessary

to extract the most relevant variables that describe the

dynamics of the dyadic system behavior. Although this is a

nontrivial matter, it is worth noting that Tuller et al.’s

(1997) model was already used to describe several systems

as dynamical systems with two attractors in sport tasks.

Ara�ujo, Davids, and Hristovski (2006) investigated sailing

regattas, and found that the place chosen to start, on the

right or left-hand side of the starting line, changed under

the influence of a given parameter. In this work, the order

parameter was expressed by the place on the starting line

where the sailors started and the control parameter was the

angle between the wind direction and the starting line (Ara-

�ujo et al., 2006). Some generalizations of Tuller et al.’s

model were also used for the description of dynamical sys-

tems with more than two attractors. Ara�ujo, Diniz, Passos,
and Davids (2014) proposed three possible coordination

patterns characterized as three stable attractors for

attacker–defender dyads in rugby union: clean try, effective

tackle, and tackle where the attacker passes the defender.

Here, the order parameter was the angle between the

attacker–defender vector and an imaginary horizontal line

parallel to the try line and the control parameters were the

relative velocity and the interpersonal distance (Ara�ujo,
Diniz, Passos, & Davids, 2014).

In our proposed model for 2v1 systems, the candidate

order parameter is related to the ball carrier–defender inter-

personal distance, with the constraint that the actions of

interest are performed within a certain critical region (i.e.,

short interpersonal distance between ball carrier and

defender). This choice was grounded on a qualitative crite-

rion, based on the different paths displayed by the ball car-

rier–defender interpersonal distance in each ball carrier

decision (i.e., to pass the ball or to go forward). In this

model, it is assumed that the interpersonal distance only

takes values between 0 and 4 and so the variable two minus

the interpersonal distance takes values between –2 and 2.

Therefore, for symmetry reasons, the candidate order

parameter is equal to two minus the interpersonal distance

from the ball carrier to the defender. If the attractor layout

is the set of possible outcome behaviors of the system, then

the changes on this layout are due to changes in the system

organization. We assume that if the ball carrier–defender

interpersonal distance is characterized by fluctuations, that

is a consequence of a pass from the ball carrier to the sup-

port player, which means that the system is attracted to a

2v1 situation—we name it attractor 1; if the ball keeps a

path characterized by a continuous decreasing of ball car-

rier–defender interpersonal distance, then the system is

attracted to a 1v1 situation—we name it attractor 2. As

previously stated, the control parameter is the ball car-

rier–defender relative velocity: (a) if decreasing (or

remaining), the ball carrier passes the ball; (b) if

increasing, the ball carrier goes forward. In the first

case, for example, the relative velocity decreases due to

a decrease of the ball carrier running speed, or the rela-

tive velocity remains the same due to a decrease of both

players running speed.

Formally, if the order parameter of the system—two

minus the ball carrier–defender interpersonal distance—is

denoted by x, then the behavior of the system is defined by

changes in x over time and can be expressed by the follow-

ing differential equation

dx

dt
¼ � dV

dx
;

where V is a potential function, which describes the

attractor landscape. Based on the system dynamics, the fol-

lowing function V seems suitable

VðxÞ ¼ x4

4
� x2

2
þ kx; ð1Þ

where x lies between –2 and 2 and k is a control parameter

that, over a certain range of values, namely k between –km
and km, takes the system from one stable state to another.

Thus, the motion equation can be written as

dx

dt
¼ �x3 þ x� k: ð2Þ
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Due to the inherent variability of the system, there are

also random fluctuations that cannot be measured. In

mathematical terms, we suggest to model these fluctua-

tions as random white noise, which leads to the more

general equation

dx

dt
¼ �x3 þ x� kþ et;

where et is a white noise with mean zero and variance

Q. The effect of this stochastic process on the behavior

of the system depends on the magnitude of Q (Schoner,

Haken, & Kelso, 1986). The occurrence of random fluc-

tuations, namely pink noise (i.e., one over f noise), has

also been observed in studies of sensorimotor coordina-

tion (Treffner & Kelso, 1999). More recently, the pres-

ence of this kind of fluctuations, from white noise to

pink noise, has been reported in several human move-

ment studies (Diniz, Barreiros, & Crato, 2010, 2012;

Diniz et al., 2011).

To account for the features observed with empirical data,

the control parameter k must be a function of the relative

velocity v. Based on empirical values, we propose the

following equation

k ¼ kðvÞ ¼ v

vm=r

� �3

; ð3Þ

where vm is the maximum relative velocity which means

that v lies between –vm and vm and r is a normalizing con-

stant given by r ¼
ffiffiffiffiffiffi
km

3
p

so that, when v goes from –vm to

vm, k goes from –km to km. A frequency distribution of

experimental observations based on the percentage of out-

comes (i.e., to pass the ball or to go forward) for several

ranges of relative velocity v motivates this functional form

of the control parameter k (Passos et al., 2012). In this par-

ticular situation, to ensure that the attractors are located

between –2 and 2, the control parameter k must lie between

–6 and 6 and thus km ¼ 6 and r ¼
ffiffiffi
6

3
p

. On the other hand, it

is reasonable to suppose that the relative velocity v lies

between �5 and 5 and so vm ¼ 5 (Hendricks et al., 2012;

Passos et al., 2008).

Results

The existence of critical points beyond which the system

is pulled to one of the two attractors is very important. In

order to calculate the critical values xc, kc, and vc at which

a transition to one of the attractors occurs, it is necessary to

study the extremes of V (i.e., the roots of dV/dx). The

third-order polynomial dV/dx has one, two, or three (real)

roots. If one of the roots of the polynomial dV/dx is denoted

by xr, then the polynomial can be written as

dV

dx
¼ x3 � xþ k

¼ ðx� xrÞðx2 þ xrxþ x2r � 1Þ:

Now consider the second-order polynomial P given by

PðxÞ ¼ x2 þ xrxþ x2r � 1:

The possible roots of the polynomial P can be written in the

form

x ¼ �xr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�3x2r þ 4

p
2

:

The system evolves toward one of the two attractors when

the polynomial dV/dx has only one root, which happens

whenever the polynomial P has no roots. This is true when

the former two roots vanish, which happens provided

�3x2r þ 4 < 0 , x2r >
4

3
, jxrj >

ffiffiffi
4

3

r
:

In sum, the transition to one of the attractors occurs at criti-

cal values xc such that

jxcj ¼
ffiffiffi
4

3

r
� 1:15;

and the corresponding critical values kc satisfy

jkcj ¼ jxcj3 � jxcj � 0:38:

The corresponding critical values vc with vm ¼ 5 and km ¼
6 satisfy

jvcj ¼ vmffiffiffiffiffiffi
km3

p ffiffi
3
p jkcj � 2:00:

Figure 4 displays the graph of the potential function (on the

left) defined by Equation 1, the motion equation (on the

center) expressed by Equation 2, and the control parameter

function (on the right) given by Equation 3, for seven val-

ues of the control parameter k (i.e., k ¼ –2.0, –1.0, –0.38,

0.0, 0.38, 1.0, 2.0). On the graphs of each potential function

and each motion equation the value of the control parameter

k is shown as well as the values of the order parameter x

corresponding to the extremes of the potential function V

(i.e., the roots of the polynomial function dx/dt (¼ –dV/dx))

(in parentheses the value of the equivalent ball carrier–

defender interpersonal distance d is shown). On the graph

of each control parameter function the value of the control

2014, Vol. 46, No. 5 297
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parameter k is presented as well as the value of the corre-

sponding relative velocity v.

If the value of the order parameter x at which the mini-

mum of the potential function V occurs is positive and

larger than the positive critical value, then the value of the

control parameter k is negative and thus the value of the

relative velocity v is also negative. This means that the ball

carrier–defender interpersonal distance is small and the

FIGURE 4. Graphical representation of the potential function (on the left), the motion equation (on the center), and the control
parameter function (on the right) for seven values of the control parameter k: a., b., c. k ¼ –2.0, k ¼ –1.0, k ¼ –0.38, respectively,
attractor 1 passes the ball; d. k ¼ 0.0 bistability; e., f., g. k ¼ 0.38, k ¼ 1.0, k ¼ 2.0, respectively, attractor 2 goes forward.

(Continued)
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defender velocity is larger than the ball-carrier velocity,

leading the system to attractor 1 (i.e., the ball carrier passes

the ball). In contrast, if the value of the order parameter x at

which the minimum of the potential function V occurs is

negative and smaller than the negative critical value, then

the value of the control parameter k is positive and there-

fore the value of the relative velocity v is also positive.

This means that the ball carrier–defender interpersonal dis-

tance is large and the ball-carrier velocity is larger than the

defender velocity, leading the system to attractor 2 (i.e., the

ball carrier goes forward). Interestingly, when the values of

the order parameter x, corresponding to the extremes of the

potential function V, lie between the negative critical value

and the positive critical value, situations of bistability take

place. This reflects the presence of an equidistribution of

the relevant variable (namely at k ¼ 0.0), reproducing the

uncertainty of the decision-making in those situations.

The empirical observations are mainly in concordance with

these predictions of the model. More precisely, a percent-

age of 86.0% of the trials is predicted by the model (Passos

et al., 2012).

Discussion

The proposed model predicts that whenever the defender

is faster than the ball carrier, the system evolves toward

attractor 1, which means that the ball carrier will perform

a pass to the support player. The model also shows that

the decision of performing a pass happens at very short

interpersonal distances between the ball carrier and the

FIGURE 4. (Continued)
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defender. This distance is in accordance to empirical data

concerning collision avoidance in human walkers (Olivier

et al., 2012) and with data from a previous investigation of

the 2v1 situation in rugby union (Passos et al., 2012). On

the contrary, whenever the ball carrier is faster than the

defender, the system evolves to a 1v1 situation, which is

consistent with attractor 2. The model also shows that the

decision to go forward occurs at larger ball carrier–defender

interpersonal distances.

The system has two alternative states, the time evolution

of which is shown to depend on a single control parameter:

the relative velocity of the ball carrier and defender. An

interesting finding is that the shifting points that define that

the system evolves to one of the two alternative states corre-

spond exactly to relative velocities of �2 ms�1. In the con-

text of rhythmic movements, the transitions between two

states induced by the scaling of a control parameter, such as

limb frequency, have been demonstrated (J. A. S. Kelso,

Schoner, Scholz, & Haken, 1987). Also, the decision-making

processes in team sports have highlighted the role of inter-

personal distance and relative position of players in what

concerns the formation of patterns in ecological conditions

(Vilar, Araujo, Davids, & Travassos, 2012) and other varia-

bles like the proximity-to-goal (Headrick et al., 2012).

In further work, we plan to examine the influence of

other possible control parameters besides relative velocity,

for instance, angular deviation. It may even be the case that

the interaction between these quantities is important (e.g.,

when angular deviation decreases as well as increases).

An important characteristic of this model is that it can be

tested in any social context whereas participants’ interac-

tive behavior evolves toward two mutually exclusive out-

comes. For instance, it can be used in other team sports

games rather than rugby or in social settings such as traffic

jam (i.e., to overtake or not to overtake the car in front of

me). These are only a few examples of clues for further

research that can be explored from this 2v1 model. But one

of the most relevant features of this model is that decisions

and actions made based upon affordance properties can be

grounded in the dynamics of coordination. Of additional

relevance is that this model is a good example of the

dynamics involved in the switching of behavioral modes.

Whereas there are plenty of examples of behavioral steady

state dynamics, there are only a few examples of such

dynamical phase transitions that capture the switching of

behavioral modes in such a real life complex example of

coordination. One important example of such dynamical

switching of behavioral modes concerns the description of

an attacker–defender dyad in rugby union as a dynamical

system with three attractors: clean try, effective tackle, and

tackle where the attacker passes the defender (Ara�ujo et al.,
2014). In this case, under the influence of two control

parameters, the dyadic system is attracted to one of the

three coordinated states.

Next, we conclude our discussion by drawing attention to

some further effects likely in 2v1 situations in rugby union,

that due to lack of empirical data were not included in this

model, namely the dummy pass to deceive the defender,

the off load pass due to hard contact between ball carrier

and defender, and the grubber kick, where the ball is

kicked along the ground past the defender and (potentially)

gathered again by the attacker.

The dummy pass is a situation where the ball carrier goes

forward. More precisely, the dummy is a fake movement

performed by the ball carrier, that aims to deceive the

defender, make him/her change the relative position and

consequently open a gap to afford the ball carrier to go for-

ward toward the try line. This deceptive movement is per-

formed at close interpersonal distance to the defender,

which means a low order parameter value; otherwise the

defender is able to recover the initial position. Also, it is

expected that, if properly executed, causes uncertainty in

the potentially decreasing defender velocity, meaning posi-

tive values of relative velocity. This prediction highlights

the need to test the relative angle between ball carrier and

defender as a candidate control parameter. It is predictable

that the deceptive movement, which characterizes a dummy

pass changes the angle and the relative velocity values,

which under certain (unknown) threshold values, affords

the ball carrier to go forward at very close interpersonal dis-

tance to the defender. But a dummy at very close interper-

sonal distance values will also afford a tackle for the

defender, meaning that to perform a dummy there is also a

collision boundary on the interpersonal distance.

A further possibility is the off load pass related to the

existence of contact between ball carrier and defender. In

this situation, two outcomes may occur: (a) the relative

velocity is positive and the ball carrier defeats the defender

and goes forward; or (b) the relative velocity is equal or

below zero and the defender is in advantage, unless the sup-

port player strips the ball and goes forward. This is one of

the hardest situations to model, because when the contact

happens other variables must be considered, such as the

players body mass and center of mass, the point of contact

between them, the relative angle between the players at the

moment of the contact, and the distortion of the soft tissues,

just to name a few. More situations to be considered sug-

gests more complexity and may increase the difficulty to

model such systems. Indeed, one of the messages of coordi-

nation dynamics is that adding more and more variables

may not necessarily enhance insight. The key rather is to

identify situations, such as those studied here, where rele-

vant collective variables and control parameters can be

empirically identified and mapped onto a theoretical model

from which further predictions may be tested.

In rugby union, another way to go forward and conquer

territory to the opponent is playing with the feet. One com-

mon skill is the grubber kick, where the ball carrier kicks

the ball forward aiming to achieve a path close to the

ground. We hypothesize that for a grubber kick to succeed,

the relative velocity values must be positive (i.e., at the

moment of the kick, the ball carrier is running faster than
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the defender), and the interpersonal distance (i.e., the order

parameter) has a critical threshold. If the grubber kick is

performed above this threshold, it affords both players to

run and grab the ball from the floor; if performed below the

threshold, the relative velocity behaves as a control parame-

ter. After the kick, both players will run toward the ball,

which is placed behind the defender. Thus, the interper-

sonal distance threshold can be modeled based on the play-

ers’ acceleration profile, which defines how long each one

takes to run a certain distance.

Finally, a common issue that arises in the context of 2v1

situations concerns the possibility of combining candidate

control parameters (e.g., in dynamical models of codimen-

sion two or higher; Thom, 1976) which afford much more

complex behavior. In the current model the combination of

relative angles thresholds with velocity and acceleration

profiles seems interesting. A further matter that was not

considered in the present model is the participants’ skill

level. To fill this gap in further studies, we suggest model-

ing the skill level based on players’ speed. We can presume

that, concerning decisions and actions, skilled players are

faster players. Thus, we can model the 2v1 with significant

speed differences between ball carrier and defender, which

consequently will provoke changes in the critical regions

characterized with ball carrier–defender interpersonal dis-

tances. Our hypothesis is that, when the ball carrier is faster

(i.e., more skilled) than the defender, the critical regions

will decrease (i.e., the ball carrier decisions and actions will

happen at very short interpersonal distances); on the other

hand, when the ball carrier is not so fast (i.e., not so skilled),

the critical regions will display a higher length. A final sub-

ject is the prospect of modeling the 2v1 considering previ-

ous success or failure sustained on risk behavior. After a

failure, players display less risky behaviors, and following

a success, risky behaviors are more likely to happen. Our

hypothesis here is that, after a failure, the ball carrier deci-

sions will occur at higher interpersonal distances from the

defender, increasing the length of the critical regions; in

contrast, a success will lead the players to increase the risk

of decisions, decreasing the length of the critical regions.

All these issues, and more, present formidable future chal-

lenges to understanding human interactive behavior in com-

petitive sports situations.
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